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Unit 1: Fossils 
Materials List 

 
 2 clear plastic boxes labeled “Exercise 1: Fossils T/F” containing 

o 22 specimens (numbered 1-22) 

 Magnifying glass 

 Plastic deli cup labeled “Exercise 3c: Half-life Experiment” 
containing:  

o 32 light-colored poker chips (with a colored dot on one side of each) 
o 32 dark-colored poker chips 

 Round plastic container holding 
o modern shark jaw 

 Plastic bag labeled “Exercise 4: Fossil Lineages” containing 
o Bag labeled “Exercise 4.1: Determining a Fossil Lineage” containing 

 5 fossil shark teeth, each labeled and marked with a red dot: 

 Cretolamna appendiculata 

 Carcharocles auriculatus  

 Carcharocles chubutensis (or C. angustidens) 

 Carcharocles megalodon  

 Otodus obliquus 
o Bag labeled “Exercise 4.2: Comparing lineages” containing 

 A single fossil shark tooth - Crow shark (Squalicorax pristodontus) 
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Unit 1: Fossils 
 

 
 
Introduction 

 
Fossils are the remains of organisms (biota) that have been dead a long, 
long time (typically in excess of 10,000 years).  These organisms have 
failed to decay because they have been preserved in some form of 
bacteria-free environment (e.g. in ice, in pine sap, in a bog, or under 
layers of sediment). In this series of exercises, students will gain an 
understanding of what constitutes a fossil, as well as the various 
mechanisms of fossil preservation (Exercise 1: Fossils: T/F?). They will 
become familiar with the concept of geological time, and what really big 
numbers of years mean (Exercise 2: Geological Time Scale). They will 
learn about how dates are assigned to fossils (Exercise 3: Dating 
Fossils), and they will learn how fossils are utilized to examine the 
historical relationships among organisms (Exercise 4: Fossil Lineages).  
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Exercise 1: Fossils: T/F? 
 
Fossils are the remains or evidence of animals or plants that have been 
preserved naturally. A deceased organism or evidence of it (e.g., footprints, 
burrows, excrement) becomes fossilized when it encounters an environment 
where it is protected from oxygen and bacteria that play major roles in the 
process of natural decay.  The general fossilization process varies greatly 
depending on the exact situation. There are four basic kinds of fossils: 1) 
The hard parts of the organism remain intact (e.g., tooth enamel, the shell of 
a mollusc). 2) Minerals have replaced the original animal or plant material. 
This is termed mineral replacement, and can be full or partial. 3) The animal 
or plant with tissue matter largely intact has been preserved in peat (acidic 
bogs), tar (tar pits), ice, or amber (the fossilized sap of pine trees). 4) The 
impression an organism made in a soft substrate has been preserved, while 
the organism itself is gone (trace fossil).  You may hear the term “living 
fossils” used to describe particular organisms.  These are organisms that are 
relics of a group that once was prominent but that is now largely extinct.  
However, living fossils are not fossils in the true sense of the word, as they 
do not fit the definition of natural preservation. You may encounter a living 
fossil in your set of items. 
 

 Find the #1 boxes containing items in bubble wrap.  Carefully remove 
all of the items in this box, and place these on a table in front of you. 

 Make a chart that has 4 columns and 22 rows, as shown on the 
following page. 

 Fill in your chart by doing the following: 
o Examine each object and determine whether it is a fossil or not. 

If not, it may be a dead organism that has not been dead long 
enough to be considered a fossil (again, around 10,000 years), 
or it might be something abiotic (lacking the characteristics of 
life). 

o Read the number on the backside of the fossil, and record your 
decision as to whether you think it is a fossil (Y), or is not a 
fossil (N) in the row with the corresponding number on your 
chart. 

o Next, for each object that you think is a fossil, indicate what 
type of fossil (in terms of the method of preservation) you feel 
it is.  

o Finally, make a guess as to what each object is (e.g. coral, leaf, 
piece of coal, rock, etc.). 
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 Check your answers on the Key to Exercise 1 provided at the end of 
this book. 

 Fill in additional information about your fossils for use in later 
exercises. 

 
Item 
# 

Fossil? 
Y/N 

Fossil Type   Fossil 
Identity  

Additional  Information 

1     
2     
3     
4     
5     
6     
7     
8     
9     
10     
11     
12     
13     
14     
15     
16     
17     
18     
19     
20     
21     
22     
 
Example of table used to complete Exercise 1. 



4 
 

Exercise 2: Geologic Time Scale  
 
Introduction 
 
What is geology?  Geology is the study of the Earth, what it is made from, 
the organisms living on Earth, and how Earth has changed over time. Do you 
ever dig in your yard or in the ground? All the soil and rocks and things that 
you find when you dig in the earth are studied in geology. Have you ever 
noticed that as you dig deeper into the earth that things change? Sometimes 
the color of the earth changes as you dig deeper, and sometimes the texture 
of the earth changes as you dig deeper. Changes occur over many years that 
create those changes. Very hot, dry weather periods affect the earth and how 
it looks and feels, and very cold and snowy weather periods also affect the 
earth and how it looks and feels. Scientists called geologists like to study all 
those materials you find when you dig in the earth. 
 
What is a geologist? A geologist works to understand the history of Earth, 
the materials that make up Earth, and the processes that occur over time to 
affect Earth. They study why the earth changes as you dig deeper into the 
earth and how changes in the weather affect how the earth looks and feels. 
Geologists study the soil, rocks, fossils, mountains, earthquakes, and 
anything else that occurs on earth to help them better understand the earth. 
 
Over 300 years ago, scientists started piecing together information about the 
earth’s geological history. They did so by comparing the patterns and ages of 
rock layers all over the world. Using this information, geologists now have 
constructed a calendar called the geologic timescale or planetary calendar 
to help us better understand the history of earth and how changes over time 
have affected earth and the organisms that live on earth. Usually when we 
think of calendars, we think of months, weeks, and days, but the geologic 
timescale consists of sections called eras and periods which are very long 
periods of time compared to the months, weeks, and days we typically talk 
about. Eras and periods are made up of millions, and even billions of years. 
Our whole lifetime would only be a very tiny little speck on the geologic 
timescale because our whole lifetime is so small compared to how long an 
era or period is on the geologic timescale. A million years is an incredible 
length of time, one that is difficult to imagine, and a billion years is a 
thousand million! Wow! 
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Exercise 2a: Toilet Paper Geological Timeline (Grades K-12) 
 
This exercise was adapted from the following source, with an introduction and guiding questions 
provided by Lu Howard: 
Wenner, J.M. 2010. "Toilet Paper Analogy for Geologic Time". The Science Education Resource Center at 

Carleton College. Carleton College. Accessed 02 July 2010. 
<http://serc.carleton.edu/quantskills/activities/TPGeoTime.html> 

 

NOTE TO TEACHERS: Concept of a Million 
 
As an introduction, and as a means of introducing young students to the 
concept of a million, a suggested activity is to read How Much is a Million 
by David Schwartz. The concept of a million is challenging for very young 
students so this book helps define the magnitude of the number prior to 
beginning their investigation of age of fossils and the geologic time scale. 
 
An alternative to reading How Much is a Million is using familiar objects 
and ideas to help students understand the concept of a million. Show 
students an inch on a ruler and tell them that one million inches is about 16 
miles, or one million inches is about the length of four trips from home to 
school (adjust as appropriate for specific student groups and distances they 
may travel to and from school). One million hours ago would be before K – 
4 students’ great, great grandparents were born. One million seconds is 
about 11.5 days. 
 
Materials 
o 1 roll of toilet paper, long sheet of adding tape/butcher paper (Optional) 
o A long hallway in or a sidewalk outside your school 
o Clear tape 
o Masking tape and/or markers 
 
Instructions for teachers: 

 Prior to this exercise, you should obtain measurements of each 
student's foot (in cm), and from this information, obtain the average 
foot size of the students in your class.  Do not tell students why you 
are taking this measurement. This will help build excitement for the 
exercise at a later date! 

 In addition to the above measurements, you should take 
approximately 30 minutes to an hour to prepare for this exercise 
before presenting it to your class. 
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 Open the file titled "Toilet Paper Timeline of Earth's History" in the 
Unit 1 folder on the Biology in a Box Teacher CD. 

 If you will be using a roll of toilet paper, gently unroll the entire roll, 
counting the number of sheets on the roll.  If the toilet paper tears, 
clear tape will come in handy! 

 Enter this number in the appropriate cell on the spreadsheet. 

 Also measure the width of each sheet as accurately (in cm) as 
possible.  Most rulers with cm markings are also subdivided into 
millimeters, each of which, of course, is equal to 0.1 cm. 

 Enter the width of each sheet in the appropriate cell on the 
spreadsheet. 

 You will notice that the lengths from the end of the roll (in both cm 
and number of sheets) denoting important events in Earth's history are 
calculated for you. 

 Mark these points with a marker at the appropriate spots on the toilet 
paper. 

 Gently roll the toilet paper back onto the roll. 

 If you are using adding tape or butcher paper in a single strip, you can 
simply enter "1" for the number of sheets, and the total length (in cm) 
for the value of “cm per sheet”.  As above, the distances from the start 
point representing various events will then be calculated for you. 

 If you do not wish to use paper of any sort, this exercise can be 
performed on a stretch of one or more hallways, or outside, with tape 
markers being placed at the appropriate points on the floor/sidewalk 
(again using “1” for the number of sheets, and the total length of the 
hall/sidewalk as the length of one “sheet” in the spreadsheet).  A 
distance of at least around 100 feet (3048 cm) is recommended, if 
possible. 

 At some point, after the # of sheets and # cm per sheet has been 
entered, also enter the average foot length of students in your class in 
the appropriate cell on the spreadsheet. 

 You will notice, after entering this value, that the spreadsheet will tell 
you the span of time represented by the average foot length of a 
student in your class. 
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 When you are ready to present this exercise to class, randomly assign 
a number (from 1 to 22) to each student in your class.  This is 
probably most easily done by putting slips of paper with each number 
from 1 to 22 on slips of paper in a hat, and letting students draw them 
from the hat.  If you have more than 22 students, some may need to 
work in pairs, or if you have less than 22 students, some students may 
receive more than one number. 

 It will be useful for you to have a copy of the list of events to help you 
keep track of them in order as this exercise progresses. 

 Each of the numbers can be used to correspond to one of the major 
events in Earth's history that is listed on the spreadsheet. 

 If students are not readers, explain to them what their designated 
events are. 

 Have students draw pictures that correspond to their Earth history 
events.  For non-readers, you may wish to also prepare labels for their 
pictures for later use. 

 When you are ready to begin, go outside or into the hall, and have the 
student designated as the present time hold the end of the toilet paper 
(or adding tape/butcher paper).  If you are only using a hall or a 
sidewalk with no paper to illustrate this, you will need to mark the 
beginning and end points of the total distance with tape, as well as the 
distances representing the various Earth history events ahead of time. 

 Begin to unroll the toilet paper (or other paper), having the "present" 
student stay in place.  When you reach an important event that you 
have marked on the paper, have the student representing that event 
stand at that mark. 

 Continue unrolling the paper, again instructing students representing 
events stand in place at their marks as those marks become visible. 

 Continue until the end of the roll is reached. 

 Look at both ends of the time line your class has made.  

 Have the students consider the following: 
o Look at how far apart some of you are. Are you close enough to 

others to see everyone else's pictures?  
o Considering this is a time line, what does that mean?  
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 Have the students take a minute to look at their feet. 

 Let the students know how much time, on average, that the length of 
one of their feet represents.  Then have them think about the following 
questions:  

o Now look toward the area on the time line that represents when 
humans first lived on earth, then look at the end of the time line 
that represents the beginning of earth. Are they close together, 
or are they far apart?  

o How would you describe how their locations on the time line 
compare to each other?  

 If you had your students do this exercise in a hallway, have them hang 
their pictures on the wall alongside their marks on the timeline. 

 Invite other classes on a field trip to come and see. 

 These students can then walk from the “beginning of the earth” to 
“present time” and look at the drawings of the organisms to see how 
our planet, and the life on it, has changed over time.  

 Your class can even offer a ‘field trip’ to other classes. As you lead 
them from the beginning of earth to the present, you can explain what 
you have learned about history of the earth! You can teach other 
students about the geologic time scale. 

 
Exercise 2b: Geologic Time Scale (Version for Grades 4-6) 
 
Exercise 2b.1: Construction of a Planetary Calendar 
 
These instructions will help you construct a planetary calendar, or timeline, 
that is scaled to a single page.  Eras of geological time will be represented by 
segments of the timeline.  Points on the timeline represent events.  By 
looking at a timeline you can tell the order in which events occur. Events on 
the timeline are ordered from left to right or from bottom to top.  For 
example, the point that marks the extinction of the dinosaurs should be to the 
below the point that marks the first appearance of humans on your timeline.   
 
A timeline contains much more information than an ordered list of events, 
because a time line allows you to visualize the length of time between 
events.  In order for this timeline to give an accurate representation of the 
past, longer line segments should represent longer lasting eras, and shorter 
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line segments should represent shorter lasting eras.  For example if Era 1 
lasted twice as long as Era 2 then the line segment spanning Era 1 should be 
twice as long as the line segment spanning Era 2.   
 
 Make a 20.5 cm line down the length of a sheet of paper. Let the upper end 

be current time. 
 Make a mark at 0.3 cm down from the top of the line.  
 Make another mark at 1.1cm down from the top of the line 
 Make a third mark at 2.5 cm from the top of the line 
 You have demarcated the eras of the geological time scale. 
 Your timeline represents a period of 4,500,000,000 years (4.5 billion years, 

the age of the Earth). 
 Using your pencil, label each section of the line with its official geologic 

name. The long lower section below the 2.5 cm mark is referred to as the 
Precambrian Era.  It is clear that the Precambrian Era takes up the majority 
of the time on our time line.  In fact, the Precambrian Era makes up about 
88% of the total time - almost all of it! The section between the 2.5 and 1.1 
cm marks the Paleozoic Era.   The Mesozoic Era is located between the 1.1 
and 0.3 cm marks.  The Cenozoic Era is the one we currently are in, and it 
is located above the 0.3 cm mark.  Now answer the following questions: 

 
 2b.1 Q1. Which era was the longest: the Paleozoic Era or the Cenozoic 

Era? 
 2b.1 Q2.  Which occurred first, the beginning of the Mesozoic Era, or 

the beginning of the Cenozoic Era? 
 
Precambrian time lasted for almost 4 billion years.  During most of this time, 
the Earth was gradually cooling and chemical compounds containing carbon 
were building up in the seas.  Carbon is the basic building block of living 
organisms and compounds that contain carbon are referred to as organic 
compounds.  Representatives of the first living organisms, prokaryotes that 
had DNA loose in the cell first appeared in the fossil record at about 3.5 billion 
years ago. The stromatolites  (2 bya, or 2000 mya) from Exercise 1 are an 
example of fossilized colonies of cyanobacteria (the first photosynthetic 
organisms and descendants of earlier prokaryotes.) 
   

 Mark this point on your calendar with the label “1st Life -
Prokaryotes”. 
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All of the major body plans or phyla of animals appeared at the very beginning 
of the Paleozoic Era, during the first period called the Cambrian.  This period 
ended 488 mya. 
 

 Make a mark 2.2 cm from the top of your timeline to denote the end 
of the Cambrian Period.  Label this point “End of Cambrian Period”. 

 The Paleozoic Era as a whole is known as the “Age of 
Invertebrates,” as invertebrate organisms dominated during this time, 
or the “Age of Trilobites,” because invertebrates called trilobites 
were common and diverse during this era.  Reptiles dominated the 
Mesozoic, which is termed the “Age of Reptiles,” or the “Age of 
Dinosaurs,” and the Cenozoic is referred to as the “Age of 
Mammals”. Human history in geologic time isn’t big enough to be 
seen at the end of the calendar.  

 Add the following time information to your timeline: 
o Formation of the earth = 4,500 mya (million years ago) 

(This point is represented by the lower end of your line.) 
o Start of Paleozoic Era = 542 mya 

(This point is represented by the mark 2.5 cm from the top of 
your line.) 

o End of Cambrian Period within Paleozoic Era = 488 mya 
(This point is represented by the mark 2.2 cm from the top of 
your line.) 

o Start of Mesozoic Era = 251 mya 
(This point is represented by the mark 1.1 cm from the top of 
your line.) 

o Start of Cenozoic Era = 65.5 mya 
(This point is represented by the mark 0.3 cm from the top of 
your line.) 

 Now that your geologic time line has been constructed, use the 
information you wrote on your chart in Exercise 1 to find the 
approximate place of the fossils from Exercise 1 along this time-line. 
Note that the Paleozoic Era involved diversification of life only in 
the seas. Major land building activity by volcanoes and earthquakes 
in the later eras led to the diversification of vertebrates, insects, 
spiders and their relatives on land. Plants and fungi also originated in 
the new terrestrial environments created in the Mesozoic and 
Cenozoic eras. 
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Exercise 2b.2: A Closer Look at Biodiversity in Geological Time 
 
You probably have noticed that all of your organisms have been crowded into 
a very small part of the geological time line.  
 

 Make a new scale on another sheet of paper to expand the time 
period during which life has diversified. Draw a line 20.5 cm down 
the length of the paper.  Let the upper end be the current time and the 
lower end be the start of the Cambrian period of the Paleozoic Era at 
542 mya (million years ago).    

 Measure out and mark off the following lengths from the top of the 
line, 18.5 cm, 16.8 cm, 15.7 cm, 13.6 cm, 11.3 cm, 9.5 cm, 7.6 cm, 
5.5 cm, 2.5 cm, 0.1 cm.  These marks denote the beginnings and 
ends of the geological periods that you will explore further.     

 Use the information on pages 17-22 (Life since the Cambrian) to 
label the segments of the expanded time line with period names.   

 Find and mark the approximate position of each fossil sample from 
Exercise 1on this new time line. 

 Which fossil(s) were you unable to place on the abbreviated time-
line? 

 Why were you unable to place them on this abbreviated time line? 
 
Exercise 2c: Geologic Time Scale (Version for Grades 7 & up) 
 
Over 300 years ago, scientists started piecing together information about the 
earth’s geological history. They did so by comparing the patterns and ages of 
rock layers all over the world. Using this information, geologists have 
constructed a calendar called the geologic timescale, or planetary calendar. 
While the calendars most of us use are subdivided into months and weeks, 
this planetary calendar consists of sections called eras and periods. Weeks 
and months are made up of days, while eras and periods are made up of 
millions of years, some near a billion years in length. This is an incredible 
length of time, one that is difficult to visualize and laborious to write down.   
It takes six zeros to write out one million (1,000,000), and nine zeros to 
write out one billion (1,000,000,000).  To save time, scientists express large 
numbers like these in exponent form.  This is called scientific notation: 
 

, ,  ൌ  ൈ  ൈ  ൈ  ൈ  ൈ  ൌ 	 
 

, , ,  ൌ  ൈ  ൈ  ൈ  ൈ  ൈ  ൈ  ൈ  ൈ  ൌ ૢ	 
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Note that the exponent, the small number to the upper right of 10, tells us 
how many zeros follow the one.  But what if we have a big number that 
doesn’t begin with a one, like 4,500 million?  Let’s start by using scientific 
notation to write down 4,500, 
 

,  ൌ .  ൈ ,  ൌ .  ൈ  
And so,    
 

, 	 ൌ ,  ൈ , ,  ൌ .  ൈ  ൈ  ൌ .  ൈ ૢ. 
 

Laws of Exponents 
 

࢟ࢇ࢞ࢇ ൌ  ࢟ା࢞ࢇ
ࢇ ൌ  

࢞ିࢇ ൌ

࢞ࢇ

 

࢟ିࢇ࢞ࢇ ൌ ࢟ି࢞ࢇ

ሺ࢞ࢇሻ࢟ ൌ ࢟࢞ࢇ

 
We used the laws of exponents above to obtain  ൈ  ൌ ା ൌ ૢ 
in converting 4,500 million years into 4.5 × 109 years (4.5 billion years, 
which is the age of the Earth). 

 
In Exercise 2, you will construct your own version of the geologic time 
scale, and then use the charts you make to understand the age relationships 
among the fossils you have identified under Exercise 1, and will be working 
with in Exercise 4. 
 
Exercise 2c.1: Construction of a Planetary Calendar (Grades 7-12) 
 
These instructions will help you construct a planetary calendar, or timeline, 
that is scaled to a single page.  Eras of geological time will be represented by 
segments of the timeline.  A timeline contains much more information than 
an ordered list of events, because a time line allows you to visualize the 
length of time between events.  In order for this timeline to give an accurate 
representation of the past, longer line segments should represent longer 
lasting eras, and shorter line segments should represent shorter lasting eras.  
For example, if Era 1 lasted twice as long as Era 2, then the line segment 
spanning Era 1 should be twice as long as the line segment spanning Era 2.   
This means that the ratio of the length of a line segment to the length of the 
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total line should be equal to the ratio of the time spanned by the line segment 
to the total time as follows: 
 

             
࢚ࢋࢍࢋ࢙	ࢋ	ࢌ	ࢎ࢚ࢍࢋ

ࢋ	ࢇ࢚࢚	ࢌ	ࢎ࢚ࢍࢋ
ൌ

࢚ࢋࢍࢋ࢙	ࢋ	࢟࢈	ࢊࢋࢇ࢙	ࢋ࢚

ࢋ࢚	ࢇ࢚࢚
    

 Make a 20.5 cm line down the length of a sheet of paper. Let the upper end 
be current time. 

 Make a mark at 0.3 cm down from the top of the line.  
 Make another mark at 1.1cm down from the top of the line 
 Make a third mark at 2.5 cm from the top of the line 
 You have demarcated the eras of the geological time scale. 
 Your timeline represents a period of 4,500,000,000 years (4.5 billion years, 

the age of the Earth). 
 Using your pen or pencil, label each section of the line with its official 

geologic name. The long lower section below the 2.5 cm mark is referred to 
as Precambrian Time.  It is clear that the Precambrian takes up the majority 
of the time on your time line.  (We will make this statement more precise in 
the next exercise.)  The section between the 2.5 and 1.1 cm marks the 
Paleozoic Era.   The Mesozoic Era is located between the 1.1 and 0.3 cm 
marks.  The Cenozoic Era, located above the 0.3 cm mark, is the current 
geological era.  

 Now determine the percentage of Earth’s history that each of the geological 
eras takes up.  To get you started, let's find the percentage of time that the 
Precambrian takes up together.   

o The length of the section prescribing the Precambrian is equal to 
20.5 cm - 2.5 cm, for a total of 18 cm.   

o Since the total line length is 20.5 cm long, we find that the ratio 

of this section’s length to the entire line’s length is 
ଵ଼

ଶ.ହ
ൎ 0.88.   

o That means that this section’s length is approximately 100 × 0.88 
= 88% of the length of the entire line.  Thus, Precambrian time 
makes up about 88% of Earth’s history - almost all of it! 

 
Using the same technique, answer the following questions: 

 2c.1 Q1. What percent of the total time does the Paleozoic Era take up? 
 2c.1 Q2. What percent of the total time does the Mesozoic Era take up? 
 2c.1 Q3. What percent of the total time does the Cenozoic Era take up? 

 
Check your answers under Exercise 2c.1 at the end of this book. 
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Precambrian time lasted for almost 4 billion years.  During most of this time, 
the Earth was gradually cooling and chemical compounds containing carbon 
were building up in the seas.  Carbon is the basic building block of living 
organisms and compounds that contain carbon are referred to as organic 
compounds.  Representatives of the first living organisms, prokaryotes that 
had DNA loose in the cell first appeared in the fossil record at about 3.5 bya 
(billion years ago). The stromatolites (2bya) from Exercise 1 are an example of 
fossilized cyanobacteria colonies that were the first photosynthetic organisms 
and descendants of the earlier prokaryotes (organisms that lack double 
membrane organelles that permit greater specialization of function in the 
higher organisms). 
 

 Question: 
Where on our time line is the point denoting the appearance of the 
first living organisms?    
 

 Answer:  
o Because this event occurred 3.5 billion, or 3500 million years 

ago, we find that the ratio of the time since this event occurred 

and the total time is 



ൎ . ૠૡ.   

o This means that the ratio of the length of the line segment 
spanning this time and the length of the entire timeline is also 
0.78.   

 

o That is,   
࢚ࢋࢍࢋ࢙	ࢌ	ࢎ࢚ࢍࢋ

ࢋ	ࢇ࢚࢚	ࢌ	ࢎ࢚ࢍࢋ
ൌ

࢚ࢋࢍࢋ࢙	ࢌ	ࢎ࢚ࢍࢋ

.
ൌ . ૠૡ. 

 
o So that length of segment = . ૠૡ ൈ .  ൎ . .    
o Therefore the point denoting the appearance of the first living 

organisms is 16.0 cm down from the top of the line. 
   

 Mark this point on your calendar with the label “1st Life -
Prokaryotes” (organisms lacking a nucleus). 

 
Most of the major body plans or phyla of animals appeared at the very 
beginning of the Paleozoic Era, during the first period called the Cambrian.  
This period ended 488 million years ago (mya). 
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 Use the process we just used to find the point that denotes the 
appearance of the first living organisms to find the point that denotes 
the end of the Cambrian Period.  Label this point End of Cambrian 
Period. 

The Paleozoic Era as a whole is known as the “Age of Invertebrates,” as 
invertebrate organisms dominated during this time, or the “Age of Trilobites,” 
because invertebrates called trilobites were common and diverse during this 
era.  Reptiles dominated the Mesozoic, which is termed the “Age of Reptiles,” 
or the “Age of Dinosaurs,” and the Cenozoic is referred to as the “Age of 
Mammals”. Human history in geologic time isn’t big enough to be seen at the 
end of the calendar.  
 

 Write the age names in after the era name on your timeline. 
  Add the following dates to your line, recording each time in 

scientific notation: 
o Lower end = 4,500 mya (million years ago) 
o Start of Paleozoic Era = 542 mya 
o End of Cambrian Period within Paleozoic Era = 488 mya  
o Start of Mesozoic Era = 251 mya 
o Start of Cenozoic Era = 65 mya 

 Now that your geologic timeline has been constructed, use the 
information you wrote on your chart in Exercise 1 to place your 
fossils along this timeline. Note that the Paleozoic Era involved 
diversification of life only in the seas. Major land building activity 
by volcanoes and earthquakes in the later eras led to the 
diversification of vertebrates, insects, spiders, and their relatives on 
land. Plants and fungi also originated in the new terrestrial 
environments created in the Mesozoic and Cenozoic eras. 

 
Exercise 2c.2: A Closer Look at Biodiversity in Geological Time 
You probably have noticed that all of your organisms have been crowded into 
a very small part of the geological time line.  
 

 Make a new scale on another sheet of paper to expand the time 
period during which multicellular life has diversified (the Cambrian 
through the present). Draw a line 20.5 cm down the length of the 
paper.  Let the upper end be the current time and the lower end be 
the start of the Cambrian period of the Paleozoic Era at 542 mya.   
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Use the information provided on pages 17-22 (Life since the 
Cambrian) to separate the expanded upper end of the time line into 
periods within eras from 542 mya to present.  Use the mathematical 
technique described in Exercise 2a to find the points on the line that 
correspond to the beginning of each period.   

 Find and mark the position of each of your fossil samples from 
Exercise 1 on this new time line, using the same mathematical 
technique.   

 Which fossil(s) were you unable to place on the abbreviated time-
line? 

 
 Exercise 2c.3: Comparing Time Frames (Open-ended Exploration) 
 

 Form teams, if you have not already done so.  
 Each team should compare the geological timeline you made to the 

one projected below on a 24-hour clock. 
 Add the events listed on this 24-hour clock to your time line. 

o Begin by finding the length of a single “hour” on your timeline.  
Hint: There should be 24 hours total on your timeline, and each 
hour should be of the same length. 

 Discuss how this comparison contributes to your understanding of 
geological time. 

 Which exercise was more meaningful to you, the drawing of 
geological time to scale, or the placement of our 24-hour clock on a 
geological time line?  Explain your answer. 
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GEOLOGIC TIMELINE OF EARTH: LIFE SINCE THE CAMBRIAN 
 

PALEOZOIC ERA – “The Age of Invertebrates” 
 
   CAMBRIAN PERIOD: 542-488 million years ago 
The algae and invertebrates similar to jellyfish and worms are abundant.  The first shelled 
animals (brachiopods) begin to appear, and early arthropod predators, the trilobites (now 
extinct) appeared, as well. Most of the currently existing major body plans of animals 
appear, as well as many bizarre organisms that are dissimilar to any major animal group 
today.   The appearance of a great diversity of life forms over such a relatively short time 
period is often referred to as the “Cambrian Explosion”.  The Burgess Shale Formation in 
Canada is one of the most famous locations from where many fossils from this period 
have been found.  At the end of this period, however, a major extinction event 
substantially reduced diversity among the brachiopods and trilobites. 

 
 
   ORDOVICIAN PERIOD: 488-444million years ago 
 Though hit hard by the earlier extinction event, trilobites were still diverse.  Blastoids 
and crinoids (ancient relatives of our modern echinoderms like starfish), bryozoans 
(“moss animals”), corals, sponges, and mollusks like snails, clams, and cephalopods 
(relatives of octopus, squid, etc.) were abundant, and eurypterids (“sea scorpions,” 
ancient relatives of horseshoe crabs and arachnids), crawled the sea floors.  Jawless, 
armored fish known as ostracoderms, the first vertebrates, appear.  Evidence suggests the 
possible appearance of simple, non-vascular plants (without specialized tissues for 
transporting water and nutrients) on land.  Near the end of this period, a major extinction 
event, possibly caused by a major glaciation, wiped out over a hundred families of marine 
organisms, making this the second largest extinction of marine life in Earth’s history. 

 

An Ordovician cephalopod 
feasting on a trilobite

Cambrian sea floor, with 
numerous trilobites, a single 
Canadaspis (an early arthropod 
similar to modern crustaceans), 
and three crinoid echinoderms 
(“sea lilies”) in the background. 
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            SILURIAN PERIOD: 444-416 million years ago 
Jawless fish diversified widely and rapidly, and the first freshwater and jawed fishes (the 
acanthodians) appeared.  The first vascular land plants appear, and forests of non-
vascular mosses lined streams and lakes. Evidence suggests the appearance of the first 
terrestrial fungi during this time.  Remains of the first arachnids and centipedes, both of 
which are predatory, suggest the presence of other arthropods that would have been their 
prey, indicating the earliest signs of simple terrestrial food webs. 

 
 
DEVONIAN PERIOD: 416-359 million years ago 

During the early Devonian, massive reefs of corals and red algae expanded.  Brachiopods 
were the dominant aquatic life forms, but bivalves, echinoderms (the crinoids and 
blastoids), and trilobites were still present, though most trilobites were gone by this 
period’s end. Ammonoids, ancient cephalopods with coiled shells, also appeared.  This 
period is often referred to as the “Age of Fishes,” due to great diversification in fish. 
Jawed fishes (including the highly armored placoderms), early sharks, and lobe-finned 
fishes (sarcopterygians, eventually give rise to the earliest amphibians. The anphibians 
become abundant during the late Devonian. Life on land consisted of giant 
representatives of modern mosses and ferns.  The earliest seed-producing plants also 
appeared during this period along with the first wingless insects.  A major extinction 
event in the late Devonian wiped out about 70% of marine invertebrates, all jawless fish, 
and placoderms. 

 

Devonian sea floor.  An early 
shark is at left, and several 
small fish are also visible. 

Three ostracoderms 
(background), and an early 
jawed fish of the Silurian. 



19 
 

CARBONIFEROUS PERIOD: 359-299 million years ago 
Trilobites became increasingly rare.  Bony fish and sharks similar to modern groups 
further diversified, and freshwater clams first appeared.  Terrestrial environments were 
humid and tropical, with no well-defined seasons.  Swampy forests of ferns and their 
relatives were common, and ancestors of cone-bearing trees appeared.  Winged insects 
such as cockroaches, mayflies, and dragonflies appeared, and without plentiful predators, 
attained huge sizes.  Amphibians, some species over 18 feet in length, were numerous 
and diverse.  The development of an amniote egg (possessing a membrane, called the 
amnion, which protects the embryo from drying out) was a key adaptation for life on land 
in the first lizardlike reptiles. These reptiles evolved from amphibian ancestors. 

 
   

  PERMIAN PERIOD: 299-251 million years ago 
During the early and middle Permian, marine invertebrate life was still somewhat similar 
to that in the previous period, the Carboniferous.  However, towards the end of the 
period, the largest extinction event in Earth’s history occurred with about 96% of all 
marine life forms, including the trilobites, going extinct.  By the middle of this period, all 
of Earth’s landmasses had drifted together to form the supercontinent Pangaea.  Although 
life on land was also affected heavily by extinctions, terrestrial life suffered far less than 
marine life.  A spreading warm dry zone in the middle of Pangaea allowed for further 
diversification of terrestrial fungi, arthropods, and plants.  Many of the swampy forests of 
ferns and their relatives gave way to early relatives of conifers (similar to modern pines), 
and the extensive radiation (diversification) of the reptiles set the stage for the beginning 
of the Mesozoic Era, the “Age of Dinosaurs.” 

 

Carboniferous forest with 
dragonfly, which may have had 
a wingspan of up to 2.5 feet! 

Pelycosaurs (late 
Permian reptiles) 
basking beneath 
horsetail “trees”
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MESOZOIC ERA – “The Age of Reptiles” / “The Age of Dinosaurs” 
 

 TRIASSIC PERIOD: 251-201.6 million years ago 
In the seas, life began to recover, although slowly.  New types of corals began again 
forming reefs.  Many other groups, including the bivalves, brachiopods, and ammonoid 
cephalopods, also made a slow comeback. Though heavily affected by the Permian mass 
extinction, echinoderms persisted. The blastoids disappeared though.  On land, seed-
bearing plants and insects diversified even further.  There were many new types of 
reptiles showing up in this period, including plant-eaters, meat-eaters (crocodilians), 
flying reptiles (pterosaurs) and giant aquatic reptiles such as the ichthyosaurs, 
plesiosaurs, pliosaurs, and sea turtles. By the end of the Triassic, representatives of all 
modern tetrapods: the salamanders, frogs, turtles, lizards, crocodilians, birds (represented 
by their dinosaur ancestors), and even mammals (most of which were small, shrew-like 
creatures) had evolved. 

.  
Left: Two Yaleosaurus eye a Plateosaurus. Right: Ichthyosaurs leap from a Triassic sea. 
  
   JURASSIC PERIOD: 201.6-145.5 million years ago 
Giant herbivorous (plant-eating) dinosaurs, such as long-necked sauropods and 
stegosaurs roamed the earth.  Predatory dinosaurs were also present, but many were 
substantially smaller than herbivores during the time, suggesting that early predatory 
dinosaurs may have preyed mostly on smaller herbivores, hunted in packs, and/or 
scavenged carcasses of large herbivores.  Large flying reptiles, the pterosaurs, dominated 
the skies, but the first bird, Archaeopteryx, also appeared.  Large marine reptiles such as 
ichthyosaurs, plesiosaurs, and giant marine crocodiles reached numerical prominence. 
Sharks and rays similar to modern forms cruised the Jurassic seas, which were also filled 
with corals, cephalopods (including the ammonoids, and belemnites, which were similar 
to modern squid, but with bullet-shaped shells that were both partially internal and 
external), bivalves, and snails.  Although early decapod crustaceans (ancestors of modern 
shrimp and lobsters) appeared way back in the Devonian, they diversified immensely 
during this time.  Terrestrial mammals also diversified.  Most were previously thought to 
have been relatively small burrow-dwellers whose nocturnal habits may have protected 
them from dinosaur predators.  However, more recent evidence reveals that some of the 
early mammals were larger, and capable of preying on baby dinosaurs.  The earliest 
known aquatic mammal, Castorocauda, similar to a beaver or otter, also dates from this 
period. 
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Left: A mid-19th century depiction of Jurassic reptile diversity. Right: Archaeopteryx, the 
first bird. 
 
   CRETACEOUS PERIOD: 145.5-65.5 million years ago 
The earliest deciduous trees and flowering plants appear, accompanied by a burst of 
insect diversity, including the earliest known ants and butterflies.  Dinosaurs and other 
large reptiles flourished throughout much of the early and middle Cretaceous, with the 
famed Tyrannosaurus rex and mosasaurs appearing.  Though mammals were still a 
relatively minor component of biodiversity, the first marsupials (mammals that carry their 
young in a pouch on the mother’s body) appeared.  Pterosaurs were still common, but 
experienced growing competition from birds.  At the end of the Cretaceous, the most 
famous extinction event occurred, wiping out all dinosaurs except for birds, as well as 
large marine reptiles, pterosaurs, and several groups of marine invertebrates, though 
many other groups of organisms were relatively unaffected.  Large concentrations of an 
element called iridium (which is rare on Earth, but found in much higher concentrations 
in meteors), at the boundary of Cretaceous and Tertiary rock layers, coupled with several 
large craters dated to this time suggest that one or more meteor impacts could have 
played a major part in this large extinction, although scenarios also involving increased 
volcanic activity, as well as falling sea levels have been hypothesized. 

 
  
Left: A mosasaur and two ichthyosaurs.  Right: T. rex, one of the most well-known 
Cretaceous dinosaurs.  All of these organisms went extinct at the end of the Cretaceous. 
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CENOZOIC ERA – “The Age of Mammals” 
 

TERTIARY PERIOD: 65.5-2.6 million years ago 
With the risk of predation from dinosaurs now removed, mammals diversified rapidly, 
quickly claiming the role of dominant vertebrates from the reptiles.  Monotremes (egg-
laying mammals such as the echidna and platypus) appeared, followed by a major 
radiation of odd-toed ungulates (relatives of horses, deer, and rhinos) and even-toed 
ungulates (represented by our modern sheep, goats, camels, etc.).  The first elephants 
with trunks and early horses appeared.  Towards the end of this period, climates became 
cooler and drier, and ice sheets began to accumulate at the poles.  Many areas of closed 
forests began to give way to more open areas, such as grasslands, deserts, and tundras, 
perhaps due to the global cooling of this time.  Nearly all modern families of angiosperms 
(flower and seed-producing plants) appeared by the middle of this period. 

   
The echidna, an egg-laying mammal (left) and Dinotherium, an ancient elephant, are only 
two of numerous diverse mammals that appeared during the Tertiary. 
 

QUATERNARY PERIOD: 2.6 million years ago to present 
For most of the Quaternary, the climate of Earth was marked by periods of repeated 
glaciations (ice ages), with an estimate of as much as a third of Earth's surface being 
covered by ice at the largest glacial maximum (though the climate of Earth that we know 
now has been about the same since the retreat of major ice sheets approximately 10,000 
years ago).  Many more mammals appeared, including many now-extinct megafauna 
(large animals), including saber-toothed tigers, wooly mammoths and mastodons, 
glyptodonts (giant relatives of armadillos), and giant ground sloths.  A much more 
familiar mammal, modern man, appeared during this time, as well! 

   
Left: Megatherium, a giant ground sloth. Right: Early humans hunting a glyptodont. 
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Exercise 3: Dating Fossils 
 
Exercise 3a: Dating Fossils (Version for grades 3-6) 
 

 
Photo by Tony Armor, landandseaimages.com 

 
Biologists can determine the approximate age of fossils by their locations 
within the layers of sediment. Look at the picture above, and you will notice 
how the sediment has formed layers in the rock. Unless large chunks of rock 
have been overturned, the fossils in the lower layers are older than the fossils 
that are in the layers near the top. This is because the sediment in the bottom 
was deposited first, with additional layers being stacked on top of lower 
layers.  
 
Scientists have developed ways of determining the age of each layer and the 
fossils found in each layer. They have developed a way of finding the age of 
fossils by using what is called radiometric dating to determine an absolute 
time scale. This can be done because scientists know that some minerals 
contain radioactive isotopes that change over time into other minerals 
through a process called radioactive decay.  
 
Isotopes are forms of chemical elements, like carbon or uranium, that have 
one primary difference from the normal form, and that is the number of 
neutrons in the nucleus. If an atom does not maintain the same number of 
neutrons and protons in its nucleus, it becomes unstable and will drop some 
of its particles until the nucleus reaches a stable state. The decay process 
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continues over time because isotopes become unstable and will then shed 
particles to return to a stable state.  
 
It is not known when a given unstable, radioactive atom, or parent isotope, 
will shed particles to become a stable, non-radioactive atom, or daughter 
isotope, but it is possible to determine how long a big group of atoms will 
take to decay. The amount of time it takes for half of the parent atoms in a 
sample to turn into daughter isotopes is called its half-life. The ratio of 
parent atoms to daughter atoms can help scientists know the age of a sample. 
If there are many more parent atoms that daughter atoms, the sample is 
younger than if the difference between parent atoms to daughter atoms were 
smaller.  
 
Half-Life Graphing Activity 
 
Materials: 

o Graph paper 
o 2 strips of construction paper of equal width (narrower widths around 

0.5", or the width of the squares on the graph paper used would 
probably work well) 

o Scissors 
o Glue or tape 
o Pencil, pen, or marker 

 
 Draw a horizontal and a vertical axis on your graph paper. 

 Label the vertical axis “Amount of Radioactive Parent Isotope 
Remaining,” and label the horizontal axis “Number of Half-lives 
Elapsed.”  

 Lay one strip of paper vertically along the y-axis with one end at the 
origin.  The gridlines on your graph paper should help you line the strip 
up to make sure that it is properly vertically aligned. 

 Tape or glue this strip to the graph paper.  

 Now take the other strip of paper, and fold it in half as precisely as 
possible. 

 Unfold this strip, and cut the strip into two equal pieces along the crease 
that marks the halfway point.  Set one half of this strip aside. 
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 Take the half strip currently in your hand, and place it vertically on your 
graph paper, parallel to the first strip, with the bottom of the strip 
touching the horizontal axis, a small distance to the right of the first strip 
(or with their edges touching). 

 Glue or tape this strip in place, just as with the first strip. 

 Using the remaining half strip, repeat the previous three steps, placing the 
new strip on the graph to the right of the previous strip (at a distance 
equal to the distance between the first two strips). 

 Continue following this procedure, adding new cut pieces of your strips 
until the pieces become too small to comfortably manage (probably 5-6 
cuts, depending on the initial length of the strips). 

 Now label, on your x-axis, each of your strips, with your first strip having 
the number “0”, and your last strip having a number equal to one less 
than the total number of strips on your graph.   

 Using a pencil or marker, make a mark at the midpoint at the distance 
across the top of each strip on your graph. 

 Now try to join all of these points with a smooth curve (do not just 
simply connect them with straight lines!). 

 
This graph shows the decay of a radioactive element.  The first strip on your 
graph represents an initial amount (at a given point in time) of a radioactive 
element.  Each new strip that you added represents the amount of the 
radioactive parent isotope remaining after an amount of time equal to one 
half-life of the parent isotope has elapsed. 
 
Note that each strip represents a particular quantity of atoms of the parent 
isotope present.  Atoms are very, very small; too small for us to see, so even 
a very small sample of a radioactive element may be made up of very many 
atoms!  Even though you may only have been able to add just a few strips of 
paper to your graph, there would still be some parent isotope remaining after 
the point in time represented by your last strip, for perhaps many more half-
lives, until only one single atom of the parent isotope remained, and it finally 
decayed to its stable state.  Just remember, after each half-life, the amount of 
the parent isotope remaining is equal to half of the amount present at the 
time before that half-life elapsed! 
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Exercise 3b: Dating Fossils (Version for grades 7 & up) 

Biologists obtain an estimate of the relative age of fossils by their locations 
within strata, or layers of sediment that the fossils are buried in at a 
particular locality. Unless large chunks of rock have been somehow 
overturned, fossils that are located in the lower strata are older than those 
that are near the top. This should make sense, if you think about how 
sedimentary rock is formed, as sediment near the bottom would have been 
deposited first, and sediment in upper layers was deposited on top of lower 
layers at a later time. There is a tool called radiometric dating, however, 
which geologists and biologists use to obtain an absolute time scale. Using 
radiometric dating, we can assign an age to a particular stratum and the 
fossils found in it.  This method is based on the fact that some minerals have 
radioactive isotopes that change through time into other minerals through a 
process called radioactive decay. The amount of time it takes for half of a 
parent (radioactive) isotope to turn into its non-radioactive daughter isotope 
is called its half-life.  

In order for you to best understand the process of radioactive decay, it is 
necessary that you understand the mathematical tool called a function. 
Complete Exercise 3b.1 on mathematical functions before going on to the 
radioactive decay exercises 3b.2 and 3b.3. 

Exercise 3b.1: Functions 
 
Functions are useful mathematical tools.  You can think of a function as a 
factory that takes elements from one set called the domain and produces 
elements belonging to another set called the range.  The picture below 
illustrates this idea.  Logs go into a paper factory and paper comes out.   
 
Now let’s examine a biological example: a poison dart frog. Think of a 
function as a rule that takes elements from a set of inputs, the domain, and 
returns elements belonging to a set of outputs, the range.  The picture below 
illustrates the idea with a function (rule) we call the toxicity function.  This 
function takes organisms as its input and returns the toxicity of the organism 
as an output.  



27 
 

                         
 

It is important to know that a function takes one element from the domain to 
exactly one element in the range.  Graphically this means that any vertical 
line intersects the graph of a function just one time.  In the example above, 
an organism is defined as toxic OR nontoxic.  It is impossible to be both.  
 
A simple example of a function is ࢍሺ࢞ሻ ൌ  .  The domain of this function࢞
is the set of all real numbers.  Recall that the real numbers represent all of 
the points on a real number line, where 0 marks the middle of the line.  
Unlike the natural numbers that only consist of the numbers used for 
counting {1,2,3,4….}, the real numbers may be fractions like ½, or even 
numbers with infinite decimal expansions like π. The range of the function 
ሻ࢞ሺࢍ ൌ    . is the set of all nonnegative real numbers࢞
 
One very important function is that describing exponential growth, which 
can be described mathematically as ࢌሺ࢞ሻ ൌ ࢞.  The domain of this 
function is the set of all real numbers and the range is the set of all positive 
numbers.  Below is a graph of the exponential function for െ  ࢞  .  
Note that any vertical line that could be drawn on the graph intersects the 
graph at most one time. 
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elements from a set of outputs (the range).  Functions take one element from the domain to 
exactly one element in the range. 
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In the following exercises we will use another important function called the 
exponential decay function, ࢌሺ࢞ሻ ൌ ି࢞.  The domain of this function is 
also the set of all real numbers, and the range is also the set of all positive 
numbers.  Its graph is pictured below for െ  ࢞  .   
 

 
 
Certain functions are one-to-one.  A function is one-to-one if it takes distinct 
values in the domain to distinct values in the range.  The toxicity function is 
not one-to-one, because it takes many different types of organisms to the 
output “toxic”.  For example, poison dart frogs and black widow spiders are 
unrelated organisms, and their toxins are packaged in different ways, exuded 
on the skin in the case of the poison dart frog, and delivered through the 
cheliceral fangs in the case of the black widow spider. Nevertheless, the 
toxicity function takes both of these organisms to the value “toxic”.  The 
function ࢍሺ࢞ሻ ൌ ሺെሻࢍ	  is also not one-to-one because࢞ ൌ ሺെሻ ൌ  ൌ
 ൌ  െ in the domain	ሻ takes both the elements  and࢞ሺࢍ ,ሺሻ.  That isࢍ
to the same number, , in the range.  Graphically, a function is one-to-one if 
every horizontal line intersects the graph of the function just one time.  You 
can see by the picture above that ࢌሺ࢞ሻ ൌ ࢞ is one-to-one.   
 
If ࢌሺ࢞ሻ is one-to-one, then it has an inverse function ିࢌሺ࢞ሻ that undoes 
what ࢌሺ࢞ሻ does.  If ࢌሺ࢞ሻ is a very simple function, it is easy to find ିࢌሺ࢞ሻ.  
For example, to undo division by 3 we should multiply by 3. That is if 
ሻ࢞ሺࢌ ൌ

࢞


, then ିࢌሺ࢞ሻ ൌ ࢞.  Likewise, to undo subtraction of 2, we should 

add 2.  That is, if ࢌሺ࢞ሻ ൌ ࢞ െ , then ିࢌሺ࢞ሻ ൌ ࢞  .  Combining these 
ideas, we can find the inverse of a slightly more complicated function, 

ሻ࢞ሺࢌ ൌ
ା࢞


.  Since ࢌሺ࢞ሻ takes ࢞, adds  and divides by	, ିࢌሺ࢞ሻ does the 

reverse: it takes ࢞, multiplies by three and subtracts .  That is, ିࢌሺ࢞ሻ ൌ
࢞ െ .   
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To find the inverse of a function such as the example of  

ሻ࢞ሺࢌ ൌ
ା࢞


, you can imagine ࢌሺ࢞ሻ as being represented by ࢟, so that 

࢟ ൌ
ା࢞


 (when you see an equation with ࢟ expressed in terms of	࢟ ,࢞ is 

indeed a function of ࢞!)  Solve the equation for ࢞ in terms of ࢟.  In this 
example, then,  ࢞ ൌ ࢟ െ .  If you now switch the variables ࢞ and ࢟ in the 
newly-obtained equation, resulting in ࢟ ൌ ࢞ െ , you have now found the 

inverse of the original function!  So, if ࢌሺ࢞ሻ ൌ
ା࢞


, then the inverse of  the 

function is ିࢌሺ࢞ሻ ൌ ࢞ െ .  Remember, though, that in order for a 
function to have an inverse, it must be one-to-one!  Again, this means that 
in a graph of the function, no horizontal line can be drawn that passes 
through more than one point on the plot of the function.  In other words, 
each value of ࢌሺ࢞ሻ can ONLY be obtained from ONE value of ࢞! 
 

 Solve the following question. 
 

Q1. Find the inverse of the following function: 

ሻ࢞ሺࢌ ൌ
࢞
ૠ
  

 Check your answer on the answer sheet under Exercise 
3b.1. 

 
The inverse of the exponential function ࢌሺ࢞ሻ ൌ ࢞ is called the logarithmic 
(log) function ିࢌሺ࢞ሻ ൌ ܗܔ ܗܔ ,Thus  .࢞  gives the exponent to which 10 ࢞
must be raised to in order to get ࢞.  

 
Examples: 

ܗܔ  ൌ  
ܗܔ ି ൌ െ 

And since  ൌ , 
ܗܔ  ൌ ܗܔ  ൌ 

 
If we don’t know the exponent to which 10 must be raised to make ࢞, then 
we must use a calculator to evaluate ܗܔ ܗܔ For example, consider  .࢞ ૠ.  
Since we don’t know the exponent ࢞ so that ࢞ ൌ ૠ, we can plug ܗܔ ૠ 
into a calculator to find ܗܔ ૠ ൎ . . 
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 Now evaluate the following expressions: 
 

Q2.     log 10ିହ ൌ 

Q3.     log ቀ
ଵ

ଵ
ቁ ൌ 

Q4.     log 1000 ൌ 
 

 Find the answers to questions 2-4 under Exercise 3b.1 in the 
answers section of this book. 

Inverse functions are useful, because they can help us solve for variables.  
We will use this method to solve equations of the form ࢞ ൌ    .࢞ for ࢟
 
Using the fact that ܗܔ ࢇ ൌ   we see that ,ࢇ
 

࢞ ൌ ࢟ ⇒ ࢞ܗܔ ൌ ܗܔ ࢟ ⇒ ࢞ ൌ ܗܔ  .࢟

 
 Solve the following equation for ࢞. 
 

Q5.      ࢞ ൌ ૠ 
 

 Find the answer to this problem under the answers for Exercise 3b.1. 
 
Exercise 3b.2: Determining the Age of a Fossil 

 
Now that you have reviewed the subject of  mathematical functions, you will 
be able to see how the decay function given below, can be used to determine 
the age of a fossil, This equation calculates the fraction of the parent 
radioactive material remaining ࢚ years after the radioactive material was 
produced, and the decay process initiated.   

 
ሻ࢚ሺࡲ     ൌ ି࢚ࣅ 
 
Note that ࡲሺሻ ൌ ିࣅ ൌ  ൌ .  That is, at the time of conception of 
the radioactive material (zero years have elapsed), 100% of the atoms 
present are atoms of the parent isotope.   
 
Here ࣅ (read as “lambda”) is a positive constant called the decay constant 
that depends of the radioactive isotope we are measuring.  The rate of decay 
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represents the number of atoms that decay in an infinitesimal length of time. 
Another important characterization of a radioactive isotope is its half-life, ࢚ො.  
The half-life of a radioactive isotope is the time it takes for half of the 
original atoms of parent isotope to decay to the daughter isotope. Scientists 
have determined the decay constant ࣅ, and the half-life ࢚ො for many different 
radioactive isotopes.  Some of them are listed in the table on the following 
page.  Different radiometric dating methods may be more appropriate than 
others when determining the age of a given fossil or other geological object.  
It is important when attempting to radiometrically date an object that the 
appropriate method is used.  Selection of the best method is dependent on 
the approximate age of the object in question, as well as other factors, such 
as the type and concentration of elements present in the object, etc. The 
important fact to remember, however, is that there must be some radioactive 
parent material remaining in the sample and some daughter project 
accumulated to obtain an age estimate. 

 
Isotope Decay 

Constant (λ) 
Half-Life (࢚ොሻ 

(in years) Parent Daughter 
Carbon-14 Nitrogen-14 5.25358×10-5 5,730 

Uranium-235 Lead-207 4.30043×10-10 700,000,000 
Rubidium-87 Strontium-87 6.14347×10-12 49,000,000,000 

Samarium-147 Neodymium-143 2.83991×10-12 106,000,000,000 

Which of the above radioactive isotopes would you use to date the following 
fossils?  (Though not universally true, as a general rule of thumb for making 
your selections for the following situations, consider a radiometric dating 
method to be appropriate if at least 0.01 half-lives, but no more than 10 half-
lives of the radioisotope have elapsed.  If a very small portion of a half-life 
of an isotope has elapsed, there will be very little of the daughter isotope 
present.  On the other hand, if a large number of half-lives have elapsed, 
then there will be very little parent isotope remaining.  Both of these 
scenarios present situations in which very accurate determination of the 
concentration of either parent or daughter isotope might be difficult.)  

Q1. Stromatolites (photosynthetic bacterial colonies) dating 1.5 
billion years old  

Q2. Wooly mammoth fur dating 10,000-14,000 years old 
Q3. Tree fern leaves 300 million years old 
Q4. Sea urchin dating 36-42 million years old 
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Q5. Which of the above radioactive isotopes might geologists use to 
date the age of the universe (13.5-14 billion years old) from 
meteorites attributed to different stars?  

 Find the answers to questions 1-5 under Exercise 3b.2 in the 
answers section of this book. 

To find the time ࢚ since an organism died, we start by measuring the 
proportion (fraction) of radioactive parent isotope, ࡲሺ࢚ሻ, that remains in the 
fossil or a rock found associated with it.  This measurement is accomplished 
as follows.  First we measure the amount of parent isotope that remains in 
the fossil.  Let’s call this number P.   Then we measure the amount of 
daughter isotope in the fossil.  Let’s call this number D.   Now since every 
atom of daughter isotope was once an atom of parent isotope, we know that 
at the time of death there was D+P parent isotope in the fossil.  That means 
that the fraction of parent isotope remaining is P/(D+P).  That is, 

ሻ࢚ሺࡲ  ൌ
۾

۲ା۾
.		 Combining this information with the fact that the parent 

isotope decays exponentially, we find that ି࢚ࣅ ൌ ሻ࢚ሺࡲ ൌ
۾

۲ା۾
.  That is, 

	ି࢚ࣅ ൌ
۾

۲ା۾
.  Now we can solve for ࢚ (which represents the age of the 

fossil!) by taking the log of each side of the previous equation. 
 

۾
۲  ۾

ൌ ି࢚ࣅ ⇒ ܗܔ
۾

۲  ۾
ൌ െ࢚ࣅ ⇒ െ


ࣅ
ܗܔ

۾
۲  ۾

ൌ  ࢚

 
 Answer the following questions: 

 
Q6. Suppose that the fraction of Uranium-235 remaining in fossil 
number 10 is 0.71.  Use this information to find the age of the fossil.   

Q7. Assume there is small error in our measurement, and in fact the 
fraction of Uranium-235 remaining is 0.714.  How does this affect the 
answer in the previous question? 

 Check your answers for these questions in the answer section at the 
end of this workbook. 
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In the table of radioactive isotopes on page 32, the half-life of each 
isotope is listed along with its rate of radioactive decay.  The half-life, 
 ො, of an isotope is the time it takes for half of the original࢚
concentration to decay.  That is,  



ൌ ොሻ࢚ሺࡲ ൌ ି࢚ࣅො 

OR 



ൌ ି࢚ࣅො 

 Answer the following two questions 

Q8. Solve the equation above for the half-life ࢚ො in terms of λ. 

Q9. Given that the decay rate of Radium-226 is . ૡ ൈ ି , find 
the half-life of Radium-226.   
 

 Check your answers under Exercise 3b.2 answers at the end of 
this book. 

 
Exercise 3b.3: Half-life Experiment 
 
The half-life (࢚ො) of a particular radioactive mineral is based on the mean, or 
average, time it takes half of the parent material to decay into the daughter 
material. Individual atoms, however, may show considerable variation in 
their lifetimes. This variation is random, or due to chance, such as in 
obtaining a particular number when rolling dice, or obtaining heads or tails 
when flipping a coin. The following experiment demonstrates how 
radioactive decay occurs due to the chance change of individual radioactive 
atoms into their non-radioactive daughter atoms. 
 

 Locate the box containing plastic chips (Box #3). Pour the chips out 
of the box and sort them into two clusters, light and dark chips. 
Assume that the box is a fossil, of which you want to determine the 
age. The chips represent the concentrations of the radioactive parent 
material (light-colored chips) and its decay product/daughter material 
(dark colored chips) at any time interval, which in this experiment is 
defined as trial number. You should have 32 light-colored chips in one 
cluster, which you should put back into the box. The concentration of 
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the radioactive parent atoms at death of the box = 100% or 1. Put the 
second pile of 32 dark colored chips aside for the moment. These 
represent daughter atoms which have a concentration of 0 in the fossil 
(box) initially, representing the moment of the death of the organism 

 Flip each light-colored chip (parent radioactive material atom) onto 
the table or some other flat surface.  

 Replace each light chip that has landed with the colored center-side up 
with a dark chip (representing the transformation of those atoms of the 
parent isotope into daughter atoms or decay product).  

 Make a table that resembles the one shown on the next page.  
 Now record the number of light chips remaining in the pool under 

parent atom and number of dark chips present under daughter atom 
under trial 1 in your table. 

 Repeat the process until all of the light chips have been removed from 
your sample pile, or until you have completed trial 10. 

 Calculate the fraction of parent material remaining at the end of each 
trial. Record this in the appropriate column in your table.  

 Plot your results on two graphs, one depicting the decay of the parent 
material (light chips, graph A) and the other depicting the 
accumulation of the daughter material (dark chips, graph B; see graph 
formats following the table template).  Alternatively, you could plot 
these results on the same graph, but you should make sure to use 
different colors and/or styles of lines for the graphs of decay of parent 
material and accumulation of daughter product, as well as include a 
legend to indicate which line is which! 

       
Table of Experimental Results 

 
Trial  Interval # 

# of Light Chips 
(Parent Radioactive 

Material) 

# of Dark Chips
(Daughter 

Decay Product) 

Fraction of Parent 
Atoms Remaining 

(Light Chips) 
0 (# of atoms at start) 32 0 1 
1    
2    
3    
4    
5    
6    
7    
8    
9    
10    



 
 

A. Graph of decay of parent material 
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B. Graph of accumulation of daughter product 

0

4

8

12

16

20

24

28

32

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
d

ar
k 

ch
ip

ss

Trial Number



37 
 

 Answer the following questions after you have completed your 
experiment: 

Q1. What kind of curve does the decay of the parent material resemble? 
(See curve figures on the following pages for comparison).  Note the 
mathematical formula that underlies the shape of the curve 
representing chip numbers decaying through time.  

Q2. What kind of curve does the accumulation of the daughter product 
resemble? (See the plots on the following page for comparison).  Note 
the mathematical formula that underlies the shape of the curve 
representing chip numbers decaying through time. 

Q3. What is the half-life (in number of trials) for the white chips in this 
experiment?  Hint: You can determine this by examining your 
fraction column! 

Q4. If you found a box with only 4 light-colored chips in it and 28 dark-
colored chips, how ‘old’ would you estimate the box to be in trial 
number time?  Use your graphs to answer this question! 

In the following questions, you are presented with a total number of 
“atoms” different than the total number with which you started! 

Q5. What would be a way to estimate the “age” of a box containing a 
different total number of “atoms” than 32 by using a graph produced 
using only your data? Think about this for a moment, and produce 
these graphs to help you answer the next two questions. 

Q6. If you found a box with only 12 light-colored chips in it and 24 dark-
colored chips, how ‘old’ would you estimate the box to be in trial 
number time?   

Q7. If you found a box with 38 light-colored chips and only 4 dark-
colored chips, how ‘old’ would you estimate the box to be in trial 
number time?  

Q8. What is another way of estimating the “ages” of boxes containing the 
numbers of chips specified in questions 4, 6, and 7?  Use this method 
to also estimate the “ages” of the boxes in questions 4, 6, & 7.  HINT: 
A calculator might come in handy! 

Q9. What is your conclusion about what determines age estimates of 
fossils, based on your answers to questions 4 - 8?  

Check your answers to these questions in the answer section of this book 
for Exercise 3b.3! 
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Plots of various mathematical functions 

    

    

 

Note, in all equations, any letters other than x represent constants that do not 
change the overall shape of each graph.  Also note that the logarithmic function is 
only valid for positive, non-zero values of x. 
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Exercise 4: Fossil Lineages 
 
Evolution refers to a change in the average values of traits in populations of 
organisms over time.  These may be morphological (e.g., body length), 
physiological (e.g., resting metabolic rate), or behavioral traits (e.g., 
temperament) that are passed from parents to their offspring through their 
genetic material (DNA).  Evolution can often result in changes within a 
single species population that are visible on the scale of a few 
generations.  Over longer ecological, historical, and geological scales, 
sufficient changes may accumulate to result in speciation events, some of 
these leading to the formation of new branches in a lineage.  In previous 
exercises, you have learned about the mechanisms of fossil preservation and 
how we can obtain an estimate of when these organisms lived. Examining 
fossil lineages is important to our understanding of how evolutionary change 
in organisms is related to environmental change, chance events, and gradual 
modification to better adapt organisms to their roles in the ecosystem.  
 
The information we can obtain on adaptation from fossils is limited to 
morphological traits, and often only those aspects of morphology that are 
associated with the hard parts that are more likely to be preserved, such as 
teeth, bones, or shells. Though we are unable to observe extinct organisms 
eating, reproducing, or moving, we can infer some aspects of their behavior 
by comparing the shapes and structures of fossilized parts to those of living 
organisms, in which we can observe behavior. This is an indirect approach 
for sure, but fossils are valuable to the biologist because they can provide an 
ordered record of the timing of appearance and/or loss of traits as organisms 
are replaced by descendants over millions of years of geologic time.  In 
Exercises 4a and 4b, you will learn how decisions are made about the 
historical relationships among organisms through examination of fossil tooth 
morphology in sharks. 
 
Exercise 4a.1: Fossil Lineages (Version for Grades K-3) 
 
Suggested reading: Shark Tooth Tale by Abby Klein 
 
NOTE TO TEACHERS: To help young students understand 
classification of organisms, put together a collection of different but 
related items (different colors and shapes of blocks, for example). Sort 
the items according to a particular characteristic (or several), but do not 
specifically say to students what characteristic(s) you used to sort them. 
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 We put different things into groups, or classifications, to sort them 
according to their similarities and differences. For example, we sort the 
foods we eat into groups, like vegetables, fruits, breads, meats, etc. and 
within each of those groups are different groups. If we sort vegetables into 
sub-groups, we might sort according to colors of green or yellow, or we 
might sort according to their shape. Vegetables can be round like a beet, 
oblong like a zucchini, or can be leafy like spinach.  Even though we can 
divide vegetables into these smaller subgroups, they are all still part of the 
food group of vegetables, which is itself a sub-group of foods. 
 

 Look at the collection of items your teacher has provided for you.  

 Try to answer the following questions: 
o Why are the items sorted this way?  
o How are items in the same group similar?  

 Think of another way to sort these same items that will give you 
different groups. What other characteristics could you use to sort the 
items a different way?  

 
Sometimes one group of items can be sorted in several different ways 
depending on the characteristics they have in common. We might sort one 
group of items according to color, or we may choose to sort them according 
to shape, or even weight. We sort, or classify, items in order to find out 
which items share similar characteristics.  
 
The same is true for living organisms. Living organisms have been classified 
according to characteristics they have in common. The more characteristics, 
or traits, they share, the more closely related they are to each other. Think 
about dogs and cats. What characteristics do dogs and cats have in common? 
How are they different?  We can look at how organisms have changed over 
time by examining changes in their traits. Scientists organize life in a 
classification system with the seven categories listed below: 
 
 KINGDOM 
       PHYLUM 
   CLASS 
       ORDER 
           FAMILY 
      GENUS 
          SPECIES  
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As organisms are found to have more characteristics in common, they may 
be placed in sub-groups further down the list together. This means that two 
organisms in the same genus are more closely related than two organisms in 
the same order.   If two organisms are in a subgroup together that is lower 
down the list, that means that they also are in the same sub-groups higher on 
the list.  One way to help you understand this is to think back to our 
vegetable analogy.  We might consider a carrot and a zucchini to be in the 
same sub-group of elongated vegetables, which means that they are also in 
the same higher subgroups (vegetables, and foods).  However, they are not 
necessarily in the same lower sub-groups (for example, orange elongated 
vegetables versus green elongated vegetables).  In terms of classifying 
organisms, for example, two kinds of frogs in the same family are also in the 
same order (Anura, which are the frogs and toads), as well as in the same 
Class, Phylum, and Kingdom.  However, those two kinds of frogs are not 
necessarily in the same genus or species. 
   
We are now going to look at five teeth. All of these teeth are from the fossil 
shark lineage (sort of like a family tree!) of the family Otodontidae, 
mackerel sharks that include the giant Megalodon shark. The Megalodon 
shark was a giant shark that we know existed in ancient times because their 
fossilized teeth have been found deep in the earth. Shark skeletons are 
composed of cartilage instead of bones, and cartilage does not fossilize so 
the only remaining traces of ancient sharks are their teeth. Your nose and 
ears are made of cartilage and that is why they can bend and seem somewhat 
flexible, unlike bones that are firm and do not bend without breaking. 
Information about the Megalodon has been gathered from studying only 
their teeth since their full skeletons were made of cartilage and did not 
fossilize.  All of these shark teeth are fossils, which mean these sharks lived 
on earth many millions of years ago and none of these types of sharks are 
living today.  
 

 Look closely at the shark teeth.  
 Think about the size of your own teeth compared to the size of your 

whole body.  
o How do you think that relates to the size of the shark teeth and 

the size their bodies probably were?  
 Now examine the shark teeth more closely.  What particular 

characteristics do you notice about these shark teeth? 
 See how many similarities and differences you can notice on each of 

these teeth. 
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 Your teacher may make a list of your suggestions on the board for 
discussion a little later. 

 All of these teeth come from extinct sharks that were closely related, 
but some of them are much older than others. 

 See if you can guess which tooth is the oldest, and which is the 
youngest (that existed most recently).  You may wish to look at the 
modern shark jaw provide in your box to help make your decision on 
which shark tooth is the most recent, based on similarities to a modern 
shark’s teeth. 

 See if you can place the other teeth in order between the teeth that you 
said were the oldest and the youngest, and try to answer the following 
questions: 

o Why do you believe they lived in the order you chose?  
o Why do you think the shark teeth changed over time? 

 
NOTE TO TEACHERS: The explanations and diagrams on pages 50-51 
give the correct order the sharks lived on earth. Using this information, 
show students the correct order and use student observations of the 
teeth to discuss what changes might have occurred over time to cause 
changes in the tooth structure. 
 
Exercise 4a.2: Determining a Fossil Lineage (Version for grades 4 & up) 
 
Teeth are well represented in the fossil record because tooth enamel is 
resistant to decay, particularly when it becomes buried in sediment or some 
other material where there is no oxygen to foster bacterial decomposition. 
Shark teeth are the most abundant teeth in fossil beds, because sharks 
produce so many teeth over their lifetimes. The shark’s tooth is a modified 
fish scale, and each shark has numerous rows of teeth in its mouth.  
 

 Examine the jaw of a modern shark found in Box 4, noting how the 
teeth are organized in the mouth, and how the general shape of the 
teeth differs based on the position of the teeth within the jaw. 

 
Each tooth is only loosely attached at its base by connective tissues to the 
jaws, so these tend to break off during feeding, and in fights with other 
sharks over food, etc. Several rows of replacement teeth continually develop 
behind the outer rows of the functional teeth, and as the functional teeth fall 
out, replacement teeth take their place.  
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The best way to examine historical relationships among organisms is to 
examine changes in traits (tooth structure in the case if this exercise) in 
lineages through time. Organisms that are more closely related share more 
traits in common. Based on this fact, biologists organize life in a hierarchical 
classification scheme that has seven categories listed here from most 
inclusive (e.g., includes all animals) to least inclusive (e.g., includes only 
animals that share sufficient numbers of genes in common to successfully 
interbreed): 

 
KINGDOM 

PHYLUM 
CLASS 

ORDER 
FAMILY 

GENUS 
SPECIES 

 
Individuals share more characteristics in common, and thus are more closely 
related to one another, the further one goes down in the hierarchy from 
kingdom to species.  In other words, a pair of organisms that are within the 
same genus are more closely related than a pair of organisms that are in the 
same order.  For example, all members of the animal kingdom (Kingdom 
Animalia) have their genetic material (DNA) enclosed in a double-
membraned compartment, are multicellular, and feed on other organisms 
(are heterotrophic). In addition to the above traits, members of the phylum 
Chordata (of which sharks, humans, and all vertebrates are members), have a 
skeletal rod called a notochord, a dorsal hollow nerve cord, a post-anal tail, 
and have gill pouches at some stage in their life cycle. 
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Category Name Characteristics 
Kingdom Animalia Multicellular organisms with DNA 

enclosed within double-membraned 
nucleus & that feed on other organisms (are 
heterotrophs) 

Phylum Chordata notochord, dorsal hollow nerve cord, post 
anal tail, & gill pouches 

Subphylum Vertebrata vertebral column/backbone 
Class Chondrichthyes Jawed fish with paired fins & flexible 

cartilaginous internal skeleton 
Order Lamniformes 

(Mackerel 
sharks) 

Upper teeth well differentiated along the 
jaws, forming the so-called "lamnoid dental 
pattern," which features enlarged anterior 
(front) teeth, slightly to much smaller 
intermediate teeth, large lateral (side) teeth, 
followed by much smaller posterior (back) 
teeth. 

Family 
Otodontidae 

 Individual teeth have a convex lingual 
(facing lip) surface, elongated root 
branches forming V- or U-shape, and an 
extended neck zone of bone (collum) on the 
lingual surface. 

 
 Examine the above table, noting the new characters added at each 

more specific level as the hierarchy descends from kingdom to 
species. 

 Now find the plastic bag marked 4.1 in Box #4. This packet contains 
five teeth in the fossil shark lineage of the family Otodontidae, 
mackerel sharks that include the giant Megalodon shark, which was 
previously thought (erroneously) to be the ancestor of the Great White 
Shark of today. 

The Mackerel shark 
family you will be 
examining in this exercise 
has the following 
classification: 
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In alphabetical order, you should have one tooth of each of the following 
species on the table in front of you: Carcharocles auriculatus, 
Carcharocles chubutensis, Carcharocles megalodon, Cretolamna 
appendiculata, and Otodus obliquus. (To aid in locating these teeth for 
return to the correct packet, each has a red dot on the enamel at the 
base of its blade/crown.  See the tooth structure figure below to aid 
you in correctly describing the regions of the teeth using appropriate 
anatomical terminology.) This is indeed the giant Megalodon shark 
lineage that you will be examining! None of these species is living 
today, though all were present in the fossil record for at least a few 
million years, and all were geographically widespread in the seas during 
their existence.  

 
Your job is to examine these teeth and to attempt to arrange them in some 
form of hypothesized lineage that represents a trend in one or more 
aspects of tooth structure.  In other words, think about how this lineage 
may have changed over time, considering selective pressures that may 
have been important in determining how teeth may have evolved in this 
group of sharks. 
 
NOTE: Differences in the degree of curvature of the teeth may not be 
reflective of changes in the lineage over time, as the shapes of teeth 
within a single species vary with their placement in the mouth.  Take 
another look at the modern shark jaw provided to get a sense of the 
general trend in tooth shape between anterior (front) and lateral 
teeth (teeth towards the sides of the mouth). 
 
 First, make a table like the one on the next page to show your decision 

process. 
 

Hypothesized Lineage 
(Most recent to oldest) 

1st Try 

Reasoning 
(1st Try) 

Actual Lineage  
(Most recent to 
oldest)  

Reasoning 
(2nd Try) 

Actual 
Changes in 

Lineage
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 Examine the figure above that shows major parts of a shark tooth. 
 Move your teeth around attempting to place them in an order that 

shows some progression of one or more traits.  In doing so, you have 
just made a hypothesized lineage for these species! 

 Make a hypothesis as to which state of each trait you are interested in 
is ancestral or primitive, and which is derived (a more recent change). 
For example, you may wish to use, ‘small’ versus ‘large’ as states of 
the trait representing size, and/or ‘pointed’ versus ‘blunt’ as states for 
the tip of the blade portion of the tooth. You might hypothesize that a 
predator such as a shark would develop increasingly more pointed 
teeth over time. ‘Blunt’ would be the ancestral value of the trait in this 
case, and ‘pointed’ derived. According to such a hypothesis, species 
with the more blunt teeth would be older in the lineage, and you 
would put the tooth with the most blunt or squared tooth on the 
bottom row in the table, and the one with the sharpest tip on the top 
row of the table.  (You are arranging these with the hypothesized 
most recent species at the top and the oldest at the bottom to 
reflect how these teeth might have been found in rock layers.  
Remember, lower layers of sediment were deposited first, and are 
thus older than the layers deposited on top of them!) 

 In the “Reasoning (1st Try)” column following the ranking of your 
species from oldest to youngest, describe the trait trends you have 
observed, and below the table, speculate as to why these trends might 
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exist, as in the example for tooth tips. Note that teeth take on the 
color of the minerals in the sediment in which they are fossilized, 
so color is not a good trait on which to base relationships! 

 
NO CHEATING! COMPLETE THESE STEPS BEFORE GOING 
ON TO THE NEXT PAGE! 
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The figure below is a cross section of sediment layers that often contain 
fossils. 

 From the relative positions of species on this figure, rank your species 
on the “Actual Lineage” column on your table from oldest to 
youngest. 

 Check the ranking you originally made in the first column of your 
table (based on your hypotheses) against the one suggested by the 
actual stratigraphy (order of specimens in the fossil record) of fossil 
specimens, which provides an estimate of relative age of the fossils. 

 You should revisit your hypothesized trait progressions in light of this 
new information, and fill in the “Second Try” column with revised 
hypotheses of changes in various traits of the teeth in this lineage over 
time. 
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 Finally, examine the figure below, to which radiometric dates 
have been added to the stratigraphy.  

 Add the Mackerel shark species to the the geological timeline 
that you completed under Exercise 2. 

 
 Consult the answer sheet under Exercise 4a for a discussion of 

trait progression in this lineage, adding this information to your 
“Actual Changes in Lineage” column. 

 
NOTE:  Though all of the sharks whose teeth you examined in this exercise 
are given separate formal species names, many paleontologists agree that 
this collection of species (as well as others in this lineage) represent a 
chronospecies, or a single biological species that evolved substantial 
changes over millions of years.   What defines a “species”?  You may wish 
to do some library or online research on “species concepts” to learn more on 
this topic, which has been (and continues to be) a topic of much debate! 
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Exercise 4b: Comparing lineages (Open-Ended Exploration, Grades 4+) 
 
In Exercise 4a, you examined changes in tooth structure that occurred over 
millions of generations in a single family or lineage (changes passed on to 
offspring). In this exercise, student teams are expected to consider the 
relationship between the extinct Megalodon/Giant White Shark, 
Carcharocles megalodon, examined in Exercise 4a, and today’s giant shark 
in the seas, the Great White Shark, Carcharodon carcharis.  
 

 Each student team should search the web, exploring what is 
known about the historical relationship between these two 
species and the families to which they belong.  Do they share a 
common ancestor? If so, what is it?   

 Learn about cladograms, trees that depict the evolutionary 
relationships between lineages. Then develop a tree 
(cladogram) that depicts the evolutionary relationship between 
the two lineages. 

 Compare and contrast the tooth structure of the two lineages, 
listing the similarities and differences of the teeth.  In 
determining whether traits are either ancestral or derived in a 
lineage (or multiple lineages), an outgroup is often used.  An 
outgroup is an organism that is not a member of a lineage that is 
being considered (in other words, is not closely related to, but 
shares a distant common ancestor with the organisms in 
question).  Comparing the teeth in the Giant White and Great 
White shark  lineages to a very different shark species (an 
outgroup) will help in identifying the traits that are shared by 
the modern day great white shark and the ancient giant white 
shark, as well as comparing the changes between the two 
lineages.  Find the bag with the crow shark (Squalicorax 
pristodontus) tooth in it. This is the outgroup species you can 
use for comparison.  When a particular trait displays multiple 
states, when the value of a trait of a species is the same as that 
observed in the outgroup, that trait value is likely ancestral, 
while a trait value that differs between the organisms in 
question and the outgroup would represent a derived, or more 
modern character state, which has evolved since a shared 
common ancestor.  (Note that a particular outgroup may not 
always necessarily display trait values that are only ancestral 
values of the trait.  Because of this, most scientists usually use 
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multiple outgroups in comparing changes in lineages over 
time!) 

 
 Check the Answer sheet for Exercise 4b for discussion of the 

relationship between the Mackerel and White shark lineages. 
 

Exercise 4c: Size of the Megalodon (Grades 4 and up) 
 
Materials 
o Megalodon tooth from Exercise 4.1 
o Other shark teeth from Exercise 4.1 (optional) 
o Graph paper 
 
The Megalodon was the largest shark that ever lived on earth. We can use 
the teeth of the Megalodon to help us determine the relative size of this 
massive animal. Since scientists know the width of the teeth and body length 
of modern-day sharks are related, we can use this information to determine 
the approximate size of the ancient Megalodon. You are going to use 
modern-day shark information to determine the approximate length of the 
Megalodon shark.  
The following table includes information gathered about the tooth width and 
body length of modern-day sharks.  
 

Tooth Width 
(cm) 

Body Length
(cm) 

0.5 66.0 
1.3 137.2 
2.0 254.0 
2.5 322.6 
3.6 457.2 
5.1 635.0 

 
 Graph the information in the chart, using tooth width as your 

horizontal, or x axis and body length your vertical, or y axis.  
 
What scale will you use for the x- and y-axis on your graph?  The ‘tooth 
width’ data begins with 0.5cm and ends with 5.1cm, and the ‘body length’ 
data begins with 66cm  and ends with 635cm, but because you are going to 
include the size of the Megalodon tooth in your graph, you may need to 
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extend your scales beyond the given data in the table. Remember that both 
your x-axis and y-axis scales must be divided into even intervals.   
 

 Connect the points with a line and extend the line beyond the last 
point you plotted on the graph. 

 Now measure the width of your Megalodon shark tooth by measuring 
it across the widest point of the root.  

 Record the width, locating the width on the x-axis.  
 Extend a line vertically from the width dimension and find the point 

of intersection with the line drawn connecting points from the data 
table.  

 Using a ruler as a guide, draw a horizontal line back to the y-axis to 
locate the dimension that indicates the approximate length of the 
Megalodon shark.  

 Now answer the following questions: 
o According to your graph, how long was the Megalodon shark 

from which your Megalodon tooth was obtained?  
o How does the length of the Megalodon shark compare to the 

different modern-day sharks listed in the table?  
 Using a ruler or measuring tape, measure the lengths given in the data 

table above along a wall in your classroom or in a hallway.  
 Mark one point on the wall or hallway with tape as your beginning 

point, and measure from that same point each time.  
 Measure each length and mark its end with tape until you have 

measured each length in the chart. When you have finished each 
measure, each new length will be progressively farther from the 
beginning point than the previous measure.  

 Using the length of the Megalodon from your graph, measure the 
length of the Megalodon on the wall or hallway as you did your other 
shark lengths, beginning at the same point of beginning for your other 
measurements.  

 Compare the length of the Megalodon to the lengths of the modern-
day sharks, and answer the following questions: 

o How do their lengths compare?  
o Are they close in length, or are there large differences in their 

lengths? 
 OPTIONAL: Measure each of the other shark teeth provided in this 

unit, and use the same methods above to estimate the sizes of the 
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individuals of those shark species represented by the teeth that you 
were provided. 

o How do the sizes of these other extinct shark species compare 
to the size of the Megalodon? 

o If you have already completed the exercise on determining a 
fossil lineage, you know the approximate ages of each of these 
teeth, indicating the time periods when these species existed.  
How did this lineage change, in terms of overall body size over 
time? 

 OPTIONAL: Make another plot, showing body size of these shark 
species, plotted against time.   
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ANSWERS FOR EXERCISE 1: FOSSILS: T/F? 
 
# 1. True. This is a piece of amber from South America that has a tiny 
insect(s) that lived 35 million years ago entombed in it. Like the fly in the 
picture below, your insect(s) became trapped in the sticky resin of a pine tree 
(Pinus sp) as it landed on its bark. The resin or amber itself became 
hardened with the insect trapped inside. Scientists have obtained the genetic 
material (DNA) from insects preserved in amber. 

 
 
#2. False. This is the lower jaw of a muskrat, Ondatra zibethicus, that died 
just a few years ago in the northwestern US.            

 
  
#3. True. These are impressions of tree fern (Alethopteris pennsylvanicus) 
leaves, which fell from trees about 213 million years ago in Pennsylvania. 
Ferns were our major trees back then, and these fern trees were 130 feet tall. 
(How many meters is this?) 
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#4. True. The specimen is a sand dollar (an echinoderm, related to starfish) 
that lived in the seas between 36 and 42 million years ago. The species, 
Leodia sexiesperforata, is common in fossil beds along the eastern coast of 
the United States and northern South America.  

 
 
#5. False. This is the shell of a clam (Phylum Mollusca, Class 
Bivalvia/Pelecypoda) that was washed up on a beach in Florida.  A clam's 
shell is secreted by its mantle. Your clam died within the last 10 years, and 
the materials composing its shell have not been replaced by minerals. 

                                                
 
#6. False. This object was never living. It is an abiotic (not derived from a 
living organism) rock composed of a crystallized mineral called gypsum 
(calcium sulfate: CaSO4). Gypsum is common to saline waters that have 
high levels of minerals dissolved in them. This piece was collected along the 
shore of a desert lake. Water rapidly evaporates from desert lakes, leaving 
minerals such as gypsum behind. 
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#7. True. This is called a trace fossil. It is hard to assign a species name to a 
trace fossil, as it is fossilized behavior, rather than an organism or its feces. 
Based on comparison with modern species and some animals preserved in 
these burrows found in fossil beds in North Carolina, your specimen was 
produced by a ghost shrimp (phylum Arthropoda, subphylum Crustacea, 
class Decapoda, probably Calianassa sp.).  Here, sp. refers to the fact that 
the species designation cannot be made. A ghost shrimp dug this burrow and 
sheltered in it on the sea floor 10-20 million years ago. The burrow itself has 
become a cast.  

 
 
#8. True. Not only organisms and their parts are fossilized, but the products 
they made when they were living can become fossilized, as well. Smell this 
piece of coprolite. Coprolite is animal feces (poop), which has been replaced 
by minerals. One of the types of coprolites described below is in your box. 
 

#8a. This particular piece of coprolite was produced by a mammal 
which lived about 4 million years ago. A reconstruction of what such 
an animal might look like is shown here. What modern organism(s) 
does it resemble? 

 
 

#8b. This piece of coprolite was produced by a shark or fish 13-15 
million years ago.  Look for the impression made by the intestines of 
the animal that produced this fecal pellet. 
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#8c. This coprolite was produced by a sea turtle that visited a beach in 
Madagascar about 30 million years ago. Sea turtles visit the same 
beach today, but their poop has not been replaced by the mineral iron.  
Iron is found in the gravel at this beach.  

  
 

#8d. This dinosaur coprolite came from a Utah fossil dig that covers 
the period 65-159 my ago. Thus your fossil is no younger than 65 my, 
and no older than 150 my.  The stone that replaced this dinosaur’s 
poop is agate. Check to see if you can find any bone fragments in the 
coprolite. If you find them, what can you say about this dinosaur’s 
diet? 

 
 

#9. False. This is a tibia (leg bone) of a coyote (Canis latrans) that was 
recently killed on a road in the desert southwest USA.  

 
 
#10.True. This is petrified wood from a tree that lived 340 million years 
ago. Can you see the growth rings that were added each year during the 
growing season?  Some are wider than others. Why?  Your specimens were 
replaced, molecule by molecule, with mineral rich silica (sand) in water, 
forming agate. 
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#11. False. This is a concretion called a pseudofossil.  It is abiotic, or non-
living and was never alive.  It resembles a fossil, but consists of mineral 
matter that formed when minerals in water deposited around some particle. 
The particle might have been another mineral, or some piece of organic 
matter. Concretions are similar to concrete. Since this material is frequently 
harder than the surrounding mineral matter, that matrix tends to erode away, 
leaving the concretion exposed. 
 
You might have a particular concretion called a Moki Ball. It is an iron 
concretion that was formed about 30 my ago around sand crystals. The 
round shape is thought to be produced from the rolling of the concretion 
down sandstone cliffs in Utah. The name comes from the Moki Indians that 
lived in the area and used the small metal balls to play games similar to our 
marbles. Medicine men also kept the balls in medicine bags, as they used 
them to help in healing their patients.   

 
 
#12.True. This is a tooth from a dinosaur. 
 

#12a. This is the tooth of a meat-eating dinosaur called a spinosaurus 
(Spinosaurus marocanus) that lived 98-105 million years ago. The 
tooth has had mineral replacement and was found in the Atlas 
Mountains of Morocco in Africa. 

                 
 

#12b. Mosasaurus was a predator that inspired legends of dragons. 
The name means "Meuse lizard", because it was first found in the 
Meuse River in the Netherlands. This animal lived in the seas during 
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the Age of Dinosaurs (70 million years ago), and obtained lengths of 
10 meters (30 feet). Its streamlined body, powerful, paddle-like limbs, 
and huge jaws with numerous razor-like teeth allowed this animal to 
catch and consume large fish, turtles, mollusks, and shellfish. Your 
tooth was collected in Morocco, Africa. 

 
 
#13. False. This is a pottery sherd from a clay pot that was produced by 
Pueblo Indians in northern New Mexico about 400 years ago. These Indians 
always broke their pots when being attacked by Apaches, so that the 
Apaches could not have use of them. Former Pueblo Indian sites thus have 
huge mounds of pottery pieces called sherds. 

 
 
#14. True. This is a trilobite. Your specimen might be Elrathia kingi or 
perhaps a Phacops sp. Approximately 10,000 species of trilobites lived in 
our seas over 500 million years ago. Before fish, the trilobites, squids, and 
octopi were the major predators in our oceans. All trilobites are now extinct 
(no species exist today).  However, trilobites are ancient relatives of modern 
arthropods like insects and spiders. This specimen was collected in ancient 
sea beds from Morocco.  Its exoskeleton has been replaced by a carbon film, 
much as in an imprint or an impression. 
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#15. True. This is a fossil tooth of either 
#15a. An ancient shark.  The enamel is still present in its original 
form, though the bone has been replaced by minerals.  Sharks have 
been around for at least 420 million years (since the early Silurian; 
possibly longer, but the oldest undisputed shark scales have been 
dated at 420 MYA).  If you have computer access, check out “A 
‘Quick & Dirty’ Guide to Fossil Shark Teeth” at  

http://www.elasmo-research.org/education/evolution/guide_f.htm 
Does your fossil tooth look like it came from any species in the guide? 

 
OR 

#15b. A bison.  Bison dispersed into North America from Asia during 
the Middle Pleistocene Era, 300,000 years ago. While native species 
of horse, llama, and elephant went extinct at the end of the 
Pleistocene, bison survived.  This tooth is 4,000 years old, and is at 
the stage of partial mineral replacement. It is of the living species 
Bison bison. Fossils do not have to be material from extinct species! 

 
OR 

#15c. Mesohippus. Mesohippus bairdi was one of the earliest horses.  
This specimen is from a Mesohippus that lived in the South Dakota 
Badlands 30 million years ago in the Oligocene. This was a small 
horse of about the size of a domestic dog. Its skeleton closely 
resembled that of modern horses, but it carried its weight on three toes 
per leg instead of on a single toe as horses do today. Its teeth also 
differ from those of a modern horse, which grazes on grasses. 
Mesohippus had low-crowned teeth, suggesting that it browsed on 
leaves of trees and shrubs. 
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#16.True. This is a fossilized vertebra:  
 

#16a. You may have a mammalian vertebra from an early small whale 
(cow whale) that was similar to our modern porpoise. The mineralized 
vertebra is between 3 and 5 million years old. 

                     
OR 

#16b.You might have the vertebra of an ancient shark of about the 
same age. Mineral replacement has also occurred in the shark 
vertebra. 
 
 

 
 
 
 
 
#17. True and False. This is a piece of coal.  Coal is a rock that consists of 
decomposed plants and animals that lived 299-359 million years ago. 
Because the organisms had decomposed into an organic soil called peat 
before heat and pressure formed the rock, coal is not a real fossil. It is 
referred to as a fossil fuel, though, and is burned today as a source of energy. 
  

 
   
#18. True. This is a fossil fish.  You may have a fossil fish from the genus 
Lycoptera, which is related to modern fish that produce electric fields.  
These fossils are from the Liaoning province of northeast China that dates at 
120 million years old. This specimen was collected from a freshwater lake-
bed adjacent to a site where feathered dinosaurs have been found.  
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Alternatively, you may have a fossil fish (likely from the genus Knightia, 
Priscacara, or Diplomystus) from the Green River Formation in Wyoming.  
Fish fossils from that site date to the Eocene epoch (54 mya to 37 mya) of 
the Cenozoic Era.  In either case, the fish fossil in your box is an impression 
with mineral replacement (iron replacing the carbon material film that was 
left as the animal decayed). 

                                           
 
#19. True. This is an example of first numerous fossils to appear in the 
fossil record. This specimen is a stromatolite that is 1.5 billion years old that 
came from a stone quarry in Minnesota. Stromatolites are colonies of 
bacteria that are rock-like buildups of microbial mats that stick up out of the 
sea floor. Cyanobacteria that formed stromatolites were the first organisms 
to produce sugars through the process of photosynthesis (converting solar 
energy into organic compounds). They release oxygen as a byproduct of the 
photosynthetic process, and thus are responsible for producing the large 
quantities of oxygen that permitted the development of more complex 
organisms in the early seas. The oldest prokaryote fossils date at 3.5 billion 
years old. You are not seeing the individual cells on this fossil, but the layers 
of algal mat produced by the colony, in cross-section. One picture shows 
stromatolite colonies dispersed over the sea floor (they can get as large as 
apartment buildings!). The other is the cross section you will see on your 
fossil that has been cut and polished.  Mineral rich silica dissolved in water 
replaced the algal mat.     
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#20. True. This sample of hair comes belongs to an extinct relative of the 
elephant, the wooly mammoth, Mammuthus primigenius. This hair was 
collected from an animal that was frozen in the permafrost in Siberia, 
Russia.  The sample of hair is approximately 10,000 years old. 

 
 
#21. False. This is not a true fossil, as this specimen was collected recently 
from a wet area on the grounds of the University of Tennessee campus. It is 
part of the stem of a horsetail (Equisetum sp.) that is only 1 m tall. The 
horsetails are referred to as living fossils, modern representatives of what 
was once a prominent group of trees in fossil history. During the Age of 
Reptiles, tree ferns and horsetails formed forests. They have since been 
replaced by deciduous (e.g. oaks and maples) and coniferous (pines, spruces, 
and firs) trees. Today the Equisetum resemble grasses. 

 
 
#22. True: This is a piece of an egg shell produced by a bird-like theropod 
dinosaur that was flightless, but that had feathers, presumably for warmth. 
These oviraptors (Oviraptosauria) are abundant in the fossil beds in 
Mongolia, China, and date about 100 my in the late Cretaceous (Age of 
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Dinosaurs). Some workers feel that these are early birds that had lost the 
ability to fly, while most consider them dinosaurs. 
 
 

 
 
 
 
 
 
 
 
 

ANSWERS FOR EXERCISE 2: GEOLOGICAL TIME SCALE 
 
Exercise 2b.1. (Version for grades 4-6) 

 2b.1 Q1. Which era was the longest the Paleozoic Era or the 
Cenozoic Era? 
The Paleozoic Era was the longest. 

 2b.1 Q2.  Which occurred first, the beginning of the Mesozoic Era 
or the beginning of the Cenozoic Era? 
The beginning of the Mesozoic Era occurred first. 

_____________________________________________________________ 
 
Exercise 2c.1 (Version for grades 7-12) 

 2c.1 Q1. What percent of the total time does the Paleozoic Era take 
up? 
About 7% 

 2c.1 Q2. What percent of the total time does the Mesozoic Era take 
up? 
About 4% 

 2c.1 Q3. What percent of the total time does the Cenozoic Era take 
up? 
About 1% 

_____________________________________________________________ 
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ANSWERS FOR EXERCISE 3: DATING FOSSILS 
 
Answers for Exercise 3b.1: 
 
Q1.  Find the inverse of the following function: 

ሻ࢞ሺࢌ ൌ
࢞

ૠ
              

Inverse =       
ሻ࢞ሺିࢌ ൌ ૠሺ࢞ െ ሻ 

Q2.     ܗܔ ି ൌ -5 

Q3.     ܗܔ ቀ



ቁ ൌ -1 

Q4.     ܗܔ  ൌ 3 
Q5.      Solve ࢞ ൌ ૠ for ࢞. 

࢞ ൌ ૠ ⇒ ࢞ܗܔ ൌ ૠܗܔ ⇒ ࢞ ൌ  ૠܗܔ

 
Answers for Exercise 3b.2 : 
 
Q1. Stromatolites -1.5 BY 
Uranium-235: useful range 10 million - 4.6 by 
 
Q2. Wooly mammoth fur- 10,000- 14,000 Y 
Carbon-14: useful range = 100 - 30,000 years  
 
Q3. Tree fern leaves - 300 MY 
Uranium-235 
 
Q4. Sea urchin - 36- 42 MY 
Uranium-235 
 
Q5. The age of stars dated from meteorites -15 BY 
Either Rubidium-87 or Samarium-147 (both with useful ranges of billions of 
years) would be appropriate. 
 
Q6. Suppose that the fraction of Uranium-235 remaining in fossil 
number 10 is 0.71.  Use this information to find the age of the fossil. 
 . ૡૡ ൈ ૡ, or , ૡૡ,  years old. 
 
Q7. Assume there is small error in our measurement and in fact the 
fraction of Uranium-235 remaining is 0.714.  How does this affect the 
answer in the previous question? 
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.  ൈ ૡ, or , ,  years old: a difference of , ૡ,  
years from the previous estimate. 
 

Q8. Solve the equation below for the half-life ̂ݐ in terms of λ. 




ൌ ି࢚ࣅො → ො࢚ ൌ

ሺܗܔି ሻ⁄

ࣅ
    

                                         
Q9. Given that the decay rate of Radium-226 is . ૡ ൈ ି, find the 
half-life of Radium-226.   

1,600 years 
 
 
 
Answers for Exercise 3b.3:   
 

Q1. What kind of curve does the decay of the parent material resemble?  
After examining your graph, you should see that the decay of the parent 
isotope resembles the exponential decay curve. 
 

Q2. What kind of curve does the accumulation of the daughter product 
resemble?  

After examining your graph, you should see that the accumulation of the 
daughter isotope resembles the logarithmic curve. 
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Q3. What is the half-life (in number of trials) for the white chips in this 
experiment?  Hint: You can determine this by examining your 
fraction column! 

The half-life of the white chips in this experiment is equal to one trial.  On 
average, you should see that the number of white chips remaining after each 
trial is approximately half the amount present compared to before the trial. 
 

Q4. If you found a box with only 4 light-colored chips in it and 28 dark-
colored chips, how ‘old’ would you estimate the box to be in trial 
number time? 

This question should be easy to answer simply by looking at your graphs, 
since you are examining a total of 32 atoms, just as you did in your 
experiment.  Your estimate of the age of the box in this case should be about 
3 trials old. 

Q5. What would be a way to estimate the “age” of a box containing a 
different total number of “atoms” than 32 by using a graph 
produced using only your data? Think about this for a moment, and 
produce these graphs to help you answer the next two questions. 

If you were to convert the numbers of each color chip in your experiment to 
a percentage or proportion, this would allow you to easily estimate “ages” of 
boxes containing different numbers of chips by examining your graphs.  If 
you were to do so, your graphs would look similar to the one below: 
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Q6. If you found a box with only 12 light-colored chips in it and 24 dark-
colored chips, how ‘old’ would you estimate the box to be in trial 
number time? 

In this box, the light “parent isotope” chips represent 12/36 total chips, or 
approximately 33.3% of the chips present.  Using your graph, you should 
arrive at an age estimate of approximately 1.6 trials. 

Q7. If you found a box with 38 light-colored chips and only 4 dark-
colored chips, how ‘old’ would you estimate the box to be in trial 
number time?  

In this box, the light “parent isotope” chips represent approximately 90.4% 
of the total chips.  Using this information and your graph, you should arrive 
at an age estimate of approximately 0.2 trials. 

Q8. What is another way of estimating the “ages” of boxes containing the 
numbers of chips specified in questions 4, 6, and 7?  Use this method 
to also estimate the “ages” of the boxes in questions 4, 6, & 7.  HINT: 
A calculator might come in handy! 

Another way of estimating the “ages” of the boxes would be to simply use 
the formula presented earlier in the text.  Remember, that formula is 

࢚ ൌ െ

ࣅ
ܗܔ ൬

ࡼ
ࡰ  ࡼ

൰ 

Also, remember that the decay constant (ࣅሻ is related to the half-life (࢚ොሻ, as 
follows: 

ො࢚ ൌ
െ ܗܔ ቀ


ቁ

ࣅ
 

Thus, we can solve for the decay constant like so: 

ࣅ ൌ
െ ܗܔ ቀ


ቁ

ො࢚
 

Since we know that the half-life of the chips in this experiment is equal to 
one trial, the decay constant would be equal to 
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െ ܗܔ ቀ

ቁ

ො࢚
ൌ
െሺെ. ሻ


ൌ .  

We can now substitute that into our equation for estimating the “ages” of the 
“fossil” boxes in the previous questions: 

࢚ ൌ െ


. 
ܗܔ ൬

ࡼ
ࡰ  ࡼ

൰ 

Now, all we have to do is just substitute the number of parent atoms for P, 
and the number of daughter atoms for D in this equation to find the ages of 
the boxes, which are as follows: 

Q4: 3.00 trials; Q6: 1.58 trials; Q7: 0.14 trials 

Q9. What is your conclusion about what determines age estimates of 
fossils, based on your answers to questions 4 - 8?  

Your age estimates using your graphs from questions 4, 6, and 7 may have 
differed slightly from the age estimates obtained using the formula for 
radioactive decay.  This is because the amount of parent isotope atoms in a 
radioactive element does not immediately instantly decrease by one half 
after each half-life elapses.  However, statistically, they do decrease, on 
average, by very close to one half with each half-life.  After a half-life 
elapses, the chance that any one parent atom will decay to form a stable 
daughter atom is equal to one half, which is illustrated quite well by your 
flipping of the poker chips.  With each flip of a remaining “parent” chip, the 
chance that a chip will land with the dot side up is equal to one half.  One 
never knows which particular parent atoms will decay at any moment, only 
the probability that one will do so.  This element of stochasticity, or 
randomness, thus introduces some degree of uncertainty to estimates of ages 
based on the half-lives of radioactive elements.  Thus, when scientists report 
age estimates of fossils, they typically express the estimate plus/minus a 
number of years, which expresses a level of confidence (usually 95% 
confidence) that the actual age of the fossil falls within that range.  Though 
there is some degree of uncertainty, radioactive elements’ tendencies to very 
closely approximate a decay rate equal to one half with every half-life 
elapsed, this margin of error is usually quite small. 
_____________________________________________________________ 
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ANSWERS FOR EXERCISE 4: FOSSIL LINEAGES 
 
Exercise 4a:  

From most recent to oldest species*: 
Youngest/most recent     Carcharocles megalodon 
    Carcharocles chubutensis/C. angustidens 
                                     Carcharocles auriculatus 
                                     Otodus obliquus 
Oldest/ most ancient  Cretolamna appendiculata 

 
*The reason for the above lineage is the presence of fossils of the sharks in 
the layers of sediment deposited over time (see figure in Exercise 4.) 
Cretolamna was found at the deepest layers and Carcharocles megalodon at 
the layers closest to the surface. 

 
The general trend in the Megalodon lineage (Family Otodontidae) is an 
initial increase in tooth size and thickness with the loss of the secondary 
cusps due to the increase in thickness. There is also the acquisition of a 
serrated cutting edge on the tooth blade (crown).  
 
Exercise 4b: Comparing Lineages 
 
The tooth morphology between the Megalodon (Giant White) and Great 
White Shark lineages is very different. Characteristics that are common to 
all members of the family Otodontidae (Megalodon lineage) include the 
neck zone or collum, which is the large transitional area between crown and 
root on the lingual (facing towards the inside of the jaws) face of the tooth. 
The collum provides an additional area of collagenous tissue beside the root 
that helps to attach the tooth to the jaw. The V- or U-shaped roots also add 
greater attachment strength, and this V-shape is most noticeable in the front 
teeth. Because of the same reason, the root branches of the anterior (front) 
teeth are elongated to resemble a 'V' or 'U' (Fig.1). The Otodontid tooth has a 
convex face (resembles a D in cross-section) that provides greater stability to 
the tooth itself, making the blade less likely to break. 
 
The Lamnidae, as represented by the Great White Shark, have teeth with 
almost no collum. The roots of the tooth also do not have well-branched root 
lobes, and thus the V- or U-shaped roots are not observed. The tooth crown, 
or blade, is flat in cross-section.  Only the serrated edge is shared in common 
between the Great White and Giant Megalodon sharks, and even here there 
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are significant differences. The serrations of the Megalodon are even and 
small. Those of the Great White are variable in size but generally larger. 
 
These significant differences caused the paleoichthyologist Henri Cappetta 
(1987) to place the Megalodon Shark and the Great White Shark not only in 
separate genera, but in separate families. 
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SUGGESTED READING 
 

 
Grades K-3 
Encyclopedia Prehistorica Mega-Beasts Pop-Up - Robert Sabuda and Matthew Reinhart 
Dinosaurs!: The Biggest Baddest Strangest Fastest - Howard Zimmerman 
Mammoths on the Move - Lisa Wheeler and Kurt Cyrus (Illustrator) 
Dinosaurs of Waterhouse Hawkins - Barbara Kerley  
Boy, Were We Wrong About Dinosaurs! - Kathleen V. Kudlinski and S.D. Schindler 

(Illustrator) 
Smithsonian Rock and Fossil Hunter - Ben Morgan & Douglas Palmer 
Stone Girl, Bone Girl: The Story of Mary Anning - Laurence Anholt & Sheila Moxley 

(Illustrator) 
How Much is a Million? – David Schwartz 
 
Grades 4-7 
Dinosaurs Walked Here and Other Stories Fossils Tell - Patricia Lauber  
Geology Rocks! 50 Hands-On Activities to Explore the Earth - Cindy Blobaum & 

Michael Kline 
Bodies from the Ice: Melting Glaciers and the Recovery of the Past – James M. Deem 
Bones Rock!: Everything You Need to Know to Be a Paleontologist - Peter Larson & 

Kristin Donnan  
Uncovering the Mysterious Wooly Mammoth - Michael Oard  
Fossils - Trudi Strain Trueit  
Dinosaurs!: Battle of the Bones - Sharon Siamon  
Is There a Dinosaur in Your Backyard?: The World's Most Fascinating Fossils, Rocks, 

and Minerals - Spencer Christian & Antonia Felix 
 
Grades 7+ 
Dinosaur Tracks and Other Fossil Footprints of the Western United States - Martin 

Lockley and Adrian P. Hunt 
Reading Between the Bones: The Pioneers of Dinosaur Paleontology - Susan Clinton  
Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All 

Ages - Dr. Thomas R. Holtz Jr. & Luis V. Rey (Illustrator) 
Fossil Legends of the First Americans - Adrienne Mayor 
An Introduction to Fossils and Minerals: Seeking Clues to the Earth's Past - Jon Erickson 
 
Scientific Journal Articles 
Botella, H., J.I. Valenzuela-Rios, and C. Martinez-Perez.  Tooth replacement in early 

chondrichthyans: a qualitative approach. Lethaia 42:365-376. 
Hone, D.W.E. and O.W.M. Rauhut. Feeding behaviour and bone utilization by theropod 

dinosaurs. Lethaia. 10.1111/j.1502-3931.2009.00187.x 
Sánchez et al. Cleptoparasitism and detritivory in dung beetle fossil brood balls from 

Patagonia, Argentina. Palaeontology 52(4): 837-848. 
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LINKS 
 
General Information on Fossils and Earth’s Geologic History 
  
Paleontology News (Science Daily) – get the latest info on new fossil discoveries! 

http://www.sciencedaily.com/news/fossils_ruins/paleontology/headlines/ 
 
PaleontOLogy: The Big Dig – The main page for the paleontology channel at the 
American Museum of Natural History's OLogy site.  Lots of good stuff here for a broad 
age range! 
 http://www.amnh.org/ology/index.php?channel=paleontology 
 
Fossils, Rocks, and Time – Good introductory information from USGS. 
 http://pubs.usgs.gov/gip/fossils/contents.html 
 
Paleontology - Online Resources – This is a HUGE compilation of tons of informative 
links, organized by the United States Geological Survey.  Excellent! (Note: This page 
was last updated in 1999, so not all links may work.  It's well worth it for the ones that 
do, though!) 
 http://geology.er.usgs.gov/paleo/paleonet.shtml 
 
Statefossils.com – Did  you know that most states have an official state fossil?  Well, 
now you do!  This site provides a list of all state fossils, as well as information about each 
of those organisms! 
 http://www.statefossils.com/ 
 
UCMP - University of California Museum of Paleontology – Another  great 
comprehensive paleo site!  Make sure to check out The Paleontology Portal, too! 
 http://www.ucmp.berkeley.edu/ 
 
The Paleontology Portal: Exploring Time and Space – Even  though TPP is mentioned 
above, this page  deserves a mention of its own!  Contains an interactive map of the US, 
allowing students to click on  a  state to see the (bio)geological history of that state, 
including interactive fossil galleries! 
 http://www.paleoportal.org/index.php?globalnav=time_space 
 
Gray Fossil Museum – This museum in Washington County, Tennessee, is located near 
an impressive dig site, where lots of Miocene mammal fossils between 4.5-7 million 
years old have been recovered.  Sounds like a great idea for a field trip! 
 http://www.grayfossilmuseum.com/ 
 
Frank H. McClung Museum – This museum, located on the University of Tennessee 
campus in Knoxville, has an excellent exhibit on the geology and fossil history of 
Tennessee, including many three-dimensional recreations of ancient Tennessee 
environments.  Best of all, admission is free! 
 http://mcclungmuseum.utk.edu/ 
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Fossils – Resources for teachers and students 
 http://www.teachers.ash.org.au/jmresources/fossils/links.html 
 
Radioactive Decay and Radiometric Dating  
 
Simulating Radioactive Decay -  Exercise 3 is based on this simulation exercise 
developed by John DeLaughter. 
http://www.earth.northwestern.edu/people/seth/202/DECAY/decay.pennies.slow.html 
 
Applet: Decay – This is a Java applet that is a simulation of radioactive decay, in which 
students can change the half-life of a hypothetical radioisotope, and observe the process 
of decay to daughter material. 
 http://www.lon-capa.org/~mmp/applist/decay/decay.htm 
 
Halflife – Website from the Physics department at the University of Colorado Boulder.  
Offers good basic information on radioactive decay, as well as another web-based applet 
that allows the students to select from several actual real-world radioisotopes and observe 
both the decay of parent isotope and formation of daughter isotope, with images of 
“atoms”, as well as graphical output of the process. 

http://www.colorado.edu/physics/2000/isotopes/radioactive_decay3.html 
 

Evolution and Shark Lineages  
 
Understanding Evolution – great source for information on evolution from UC 
Berkeley 
 http://www.evolution.berkeley.edu/ 
 
A Golden Age of Sharks – Page about the evolution of sharks from the ReefQuest 
Centre for Shark Research.  Lots of great information here for students interested in 
sharks! 
 http://www.elasmo-research.org/education/evolution/golden_age.htm 
 
Megalodon Shark Evolution – An article by Lutz Andres describing the evolution of the 
Megalodon shark lineage, which students examine directly in Exercise 4. 

http://www.fossilguy.com/topics/megshark/megshark.htm 
 
A Key to the Common Genera of Neogene Shark Teeth – A taxonomic key by Robert 
Purdy, used for the identification of ancient shark species based on their teeth.  
 http://paleobiology.si.edu/pdfs/sharkkey.pdf 
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